在这篇文章中,我们将介绍如何使用深度Q学习(DQN)算法来训练一个黑杰克(Blackjack)代理。我们将展示如何利用RLCard工具包开发和应用强化学习算法。为了使内容自包含,我们首先安装RLCard。
安装RLCard和PyTorch
首先,我们需要安装RLCard和PyTorch。你可以通过以下命令来安装:
!pip install rlcard[torch]
安装过程会下载和安装RLCard库及其依赖项,包括PyTorch。
导入RLCard和DQNAgent
安装完毕后,我们需要导入RLCard和一个DQN代理。DQN代理将学习如何在游戏中获胜。
import rlcard
from rlcard.agents import DQNAgent
创建黑杰克环境
接下来,我们通过将blackjack
传递给make
方法来创建一个黑杰克环境,并查看其基本信息。
env = rlcard.make("blackjack")
print("Number of actions:", env.num_actions)
print("Number of players:", env.num_players)
print("Shape of state:", env.state_shape)
print("Shape of action:", env.action_shape)
输出的信息如下:
Number of actions: 2
Number of players: 1
Shape of state: [[2]]
Shape of action: [None]
由此可知,黑杰克是一款非常简单的游戏,只有两个可能的动作,且只有一个玩家。
创建DQN代理
现在是时候训练我们的DQN代理以掌握这个游戏了!首先,我们创建一个DQNAgent。
agent = DQNAgent(
num_actions=env.num_actions,
state_shape=env.state_shape[0],
mlp_layers=[64, 64],
)
在这里,我们使用一个64-64的深度神经网络来进行学习。然后,我们将DQNAgent传递给环境。
env.set_agents([agent])
准备训练
现在我们准备开始训练!我们首先导入一些用于训练的实用类和函数。
from rlcard.utils import (
tournament,
reorganize,
Logger,
plot_curve,
)
开始训练并记录性能
以下脚本将训练DQN 1000个周期(即1000局游戏)。通常情况下,代理训练时间越长,性能越强。
with Logger("experiments/blackjack_dqn_result/") as logger:
for episode in range(1000):
# 从环境中生成数据
trajectories, payoffs = env.run(is_training=True)
# 重新组织数据为状态、动作、奖励、下一状态、完成标志
trajectories = reorganize(trajectories, payoffs)
# 将转移数据喂入代理的记忆中,并训练代理
for ts in trajectories[0]:
agent.feed(ts)
# 评估性能
if episode % 50 == 0:
logger.log_performance(
env.timestep,
tournament(
env,
10000,
)[0]
)
# 获取路径
csv_path, fig_path = logger.csv_path, logger.fig_path
在训练过程中,日志文件和模型权重将保存到experiments/blackjack_dqn_result/
目录中。
绘制学习曲线
训练完成后,我们可以绘制学习曲线来监控代理的改进情况。
plot_curve(csv_path, fig_path, "DQN")
总结
通过以上步骤,我们成功地使用深度Q学习算法训练了一个黑杰克代理。通过RLCard工具包,我们可以轻松地开发和应用强化学习算法来训练各种游戏代理。