使用深度Q学习训练黑杰克Agent

在这篇文章中,我们将介绍如何使用深度Q学习(DQN)算法来训练一个黑杰克(Blackjack)代理。我们将展示如何利用RLCard工具包开发和应用强化学习算法。为了使内容自包含,我们首先安装RLCard。

安装RLCard和PyTorch

首先,我们需要安装RLCard和PyTorch。你可以通过以下命令来安装:

!pip install rlcard[torch]

安装过程会下载和安装RLCard库及其依赖项,包括PyTorch。

导入RLCard和DQNAgent

安装完毕后,我们需要导入RLCard和一个DQN代理。DQN代理将学习如何在游戏中获胜。

import rlcard
from rlcard.agents import DQNAgent

创建黑杰克环境

接下来,我们通过将blackjack传递给make方法来创建一个黑杰克环境,并查看其基本信息。

env = rlcard.make("blackjack")
print("Number of actions:", env.num_actions)
print("Number of players:", env.num_players)
print("Shape of state:", env.state_shape)
print("Shape of action:", env.action_shape)

输出的信息如下:

Number of actions: 2
Number of players: 1
Shape of state: [[2]]
Shape of action: [None]

由此可知,黑杰克是一款非常简单的游戏,只有两个可能的动作,且只有一个玩家。

创建DQN代理

现在是时候训练我们的DQN代理以掌握这个游戏了!首先,我们创建一个DQNAgent。

agent = DQNAgent(
    num_actions=env.num_actions,
    state_shape=env.state_shape[0],
    mlp_layers=[64, 64],
)

在这里,我们使用一个64-64的深度神经网络来进行学习。然后,我们将DQNAgent传递给环境。

env.set_agents([agent])

准备训练

现在我们准备开始训练!我们首先导入一些用于训练的实用类和函数。

from rlcard.utils import (
    tournament,
    reorganize,
    Logger,
    plot_curve,
)

开始训练并记录性能

以下脚本将训练DQN 1000个周期(即1000局游戏)。通常情况下,代理训练时间越长,性能越强。

with Logger("experiments/blackjack_dqn_result/") as logger:
    for episode in range(1000):
        # 从环境中生成数据
        trajectories, payoffs = env.run(is_training=True)

        # 重新组织数据为状态、动作、奖励、下一状态、完成标志
        trajectories = reorganize(trajectories, payoffs)

        # 将转移数据喂入代理的记忆中,并训练代理
        for ts in trajectories[0]:
            agent.feed(ts)

        # 评估性能
        if episode % 50 == 0:
            logger.log_performance(
                env.timestep,
                tournament(
                    env,
                    10000,
                )[0]
            )

    # 获取路径
    csv_path, fig_path = logger.csv_path, logger.fig_path

在训练过程中,日志文件和模型权重将保存到experiments/blackjack_dqn_result/目录中。

绘制学习曲线

训练完成后,我们可以绘制学习曲线来监控代理的改进情况。

plot_curve(csv_path, fig_path, "DQN")

总结

通过以上步骤,我们成功地使用深度Q学习算法训练了一个黑杰克代理。通过RLCard工具包,我们可以轻松地开发和应用强化学习算法来训练各种游戏代理。

参考文献

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

步子哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值