【提高+/省选−】洛谷P1495 —— 【模板】中国剩余定理(CRT)/ 曹冲养猪

题目来源

P1495 【模板】中国剩余定理(CRT)/ 曹冲养猪 - 洛谷

题目描述
自从曹冲搞定了大象以后,曹操就开始捉摸让儿子干些事业,于是派他到中原养猪场养猪,可是曹冲满不高兴,于是在工作中马马虎虎,有一次曹操想知道母猪的数量,于是曹冲想狠狠耍曹操一把。举个例子,假如有 16 头母猪,如果建了 3 个猪圈,剩下 1 头猪就没有地方安家了。如果建造了 5 个猪圈,但是仍然有 1 头猪没有地方去,然后如果建造了 7 个猪圈,还有 2 头没有地方去。你作为曹总的私人秘书理所当然要将准确的猪数报给曹总,你该怎么办?

输入格式
第一行包含一个整数 n —— 建立猪圈的次数,接下来 n 行,每行两个整数 ai​,bi​,表示建立了 ai​ 个猪圈,有 bi​ 头猪没有去处。你可以假定 a1​∼an​ 互质。

输出格式
输出包含一个正整数,即为曹冲至少养母猪的数目。

输入输出样例
in:
3
3 1
5 1
7 2
out:
16
说明/提示
1≤n≤10,0≤bi​<ai​≤100000,1≤ai​≤1018

算法分析

一道关于中国剩余定理的题目

不难看出,

题面可以翻译为:

求解以下线性同余方程组

x≡r1 ​(mod m1​) x≡r2 ​(mod m2​)...x≡rn ​(mod mn​)​

其中模数 m1​.m2​,...mn

mn​ 为 两两互质 的整数,

求 x 的最小非负整数解

利用中国剩余定理求解,步骤如下:

(1) 计算所有模数的积 M=m1m2...mn​;

(2) 计算 ci​=mi​M​;

(3) 计算 ci​ 在模 mi​ 意义下的乘法逆元 ci−1​;

(4) 计算解 x=∑i=1 n​ri​ci​ci−1​ (mod M).

中国剩余定理的算法实现:

对于 M 和 ci​,可以在两次循环时分别计算;

对于 ci−1​,

可以转化为利用 扩展欧几里得算法 求解:

给定两个互质整数 a,m, 对于 ax≡1 (mod m).,求 a 的乘法逆元 x (0<x<m).

把同余方程转化为不定方程.
由 ax≡1 (mod m)
得 ax=m×(−y)+1 (设为 −y 便于移项后计算
得 ax+my=1.
转化为用 扩展欧几里得求解不定方程 ax+my=1=gcd(a,m) 方程中 x 的解.

为确保得到的答案为 最小正整数 ,最后答案为 xmin=(x%m+m)%m.(一定要注意)
eg: x=−7,m=5,xmin=(−7%5+5)%5=3
x=7,m=5,xmin=(7%5+5)%5=2

温馨提示

我本来用的是long long

但是发现最后一个样例错了

后来发现数据量太大了

long long爆掉了

只能用__int128 才能通过

所以代码如下

#include <bits/stdc++.h>
using namespace std;
typedef __int128  ll;
const int q=3e6+5;
long long m[q],a[q];
ll e(ll a,ll b,ll &x,ll &y){//十年OI一场空,不开longlong见祖宗
	if(b==0){
		x=1;
		y=0;
		return a;
	}
	ll d=e(b,a%b,y,x);
	y-=(a/b)*x;
	return d;
}
 
int main() {
	long long n;
	cin>>n;
	ll g=1;
	for(int i=1;i<=n;i++){
		cin>>m[i]>>a[i];
		g*=m[i];
	}
	long long t=0;
	for(int i=1;i<=n;i++){
		ll x,y;
		ll mi=g/m[i];
		e(mi,m[i],x,y);
		t=(t+a[i]*mi%g*x)%g;//按照分析过程,求xmin
	}
	t=(t+g)%g;
	cout<<t;
	return 0;
}

求大家点个赞吧

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值