题目来源
P1495 【模板】中国剩余定理(CRT)/ 曹冲养猪 - 洛谷
题目描述
自从曹冲搞定了大象以后,曹操就开始捉摸让儿子干些事业,于是派他到中原养猪场养猪,可是曹冲满不高兴,于是在工作中马马虎虎,有一次曹操想知道母猪的数量,于是曹冲想狠狠耍曹操一把。举个例子,假如有 16 头母猪,如果建了 3 个猪圈,剩下 1 头猪就没有地方安家了。如果建造了 5 个猪圈,但是仍然有 1 头猪没有地方去,然后如果建造了 7 个猪圈,还有 2 头没有地方去。你作为曹总的私人秘书理所当然要将准确的猪数报给曹总,你该怎么办?
输入格式
第一行包含一个整数 n —— 建立猪圈的次数,接下来 n 行,每行两个整数 ai,bi,表示建立了 ai 个猪圈,有 bi 头猪没有去处。你可以假定 a1∼an 互质。
输出格式
输出包含一个正整数,即为曹冲至少养母猪的数目。
输入输出样例
in:
3
3 1
5 1
7 2
out:
16
说明/提示
1≤n≤10,0≤bi<ai≤100000,1≤ai≤1018
算法分析
一道关于中国剩余定理的题目
不难看出,
题面可以翻译为:
求解以下线性同余方程组:
x≡r1 (mod m1) x≡r2 (mod m2)...x≡rn (mod mn)
其中模数 m1.m2,...mn
mn 为 两两互质 的整数,
求 x 的最小非负整数解。
利用中国剩余定理求解,步骤如下:
(1) 计算所有模数的积 M=m1m2...mn;
(2) 计算 ci=miM;
(3) 计算 ci 在模 mi 意义下的乘法逆元 ci−1;
(4) 计算解 x=∑i=1 nricici−1 (mod M).
中国剩余定理的算法实现:
对于 M 和 ci,可以在两次循环时分别计算;
对于 ci−1,
可以转化为利用 扩展欧几里得算法 求解:
给定两个互质整数 a,m, 对于 ax≡1 (mod m).,求 a 的乘法逆元 x (0<x<m).
把同余方程转化为不定方程.
由 ax≡1 (mod m)
得 ax=m×(−y)+1 (设为 −y 便于移项后计算)
得 ax+my=1.
转化为用 扩展欧几里得求解不定方程 ax+my=1=gcd(a,m) 方程中 x 的解.
为确保得到的答案为 最小正整数 ,最后答案为 xmin=(x%m+m)%m.(一定要注意)
eg: x=−7,m=5,xmin=(−7%5+5)%5=3
x=7,m=5,xmin=(7%5+5)%5=2
温馨提示
我本来用的是long long
但是发现最后一个样例错了
后来发现数据量太大了
long long爆掉了
只能用__int128 才能通过
所以代码如下
#include <bits/stdc++.h>
using namespace std;
typedef __int128 ll;
const int q=3e6+5;
long long m[q],a[q];
ll e(ll a,ll b,ll &x,ll &y){//十年OI一场空,不开longlong见祖宗
if(b==0){
x=1;
y=0;
return a;
}
ll d=e(b,a%b,y,x);
y-=(a/b)*x;
return d;
}
int main() {
long long n;
cin>>n;
ll g=1;
for(int i=1;i<=n;i++){
cin>>m[i]>>a[i];
g*=m[i];
}
long long t=0;
for(int i=1;i<=n;i++){
ll x,y;
ll mi=g/m[i];
e(mi,m[i],x,y);
t=(t+a[i]*mi%g*x)%g;//按照分析过程,求xmin
}
t=(t+g)%g;
cout<<t;
return 0;
}
求大家点个赞吧