深度蒙特卡洛算法及其在“吹牛“游戏中的应用

一、深度蒙特卡洛算法简介

深度蒙特卡洛算法(Deep Monte-Carlo, DMC)是一种结合深度神经网络和蒙特卡洛方法的强化学习算法。该算法最早于2020年在论文《DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning》中被提出,用于解决复杂的斗地主问题。DMC算法属于基于价值(value-based)的方法,使用深度网络来拟合每个时刻智能体状态和采取每种动作的价值函数(Q值)。

1.1 算法特点

  1. 利用深度神经网络进行特征提取和价值估计
  2. 适用于大规模动作空间和部分可观测的马尔可夫决策过程
  3. 采用无偏的Q值更新方式,但存在高方差问题

1.2 网络结构

DMC算法的网络结构主要由两部分组成:

  1. 动作编码网络:对合法的出牌动作进行编码
  2. 状态编码网络:对玩家手牌和历史出牌信息进行编码

这两个网络的输出最终会合并输入一个全连接网络,再次进行深层特征提取后输出当前状态下采取各动作的Q值。

1.2.1 动作编码网络

动作编码网络的设计有以下几个优点:

  1. 无需动作掩码即可屏蔽非法动作
  2. 适用于较大动作空间,参数量不会因动作空间增大而明显增加
  3. 使模型能对智能体的动作有更深入的理解,有利于对未见过动作的价值估计泛化

例如,模型理解了"3KKK"是一个很好的牌型后,即使未见过"3JJJ"这个动作,也能对其价值进行较好的评估。

1.2.2 状态编码网络

状态编码网络用于编码玩家当前持有的手牌和其他玩家已经打出的手牌信息。这对于像斗地主这样的部分可观测马尔可夫决策过程来说非常重要,因为记住已经打出的牌可以帮助智能体做出更好的决策。

1.3 算法更新方式

1.3.1 采样

DMC算法采用epsilon-greedy方法进行采样:

  • 以epsilon的概率随机选择动作
  • 以1-epsilon的概率选择Q值最大的动作
1.3.2 损失函数

DMC算法使用均方差(MSE)损失对Q值进行更新。与DQN等算法不同,DMC只在每局游戏结束时获得所有的奖励,而不是每一步都获得奖励。这种方式使得DMC的Q值估计是无偏的,但同时也带来了高方差的问题。在原始论文中,通过并行采样来缓解这一问题。

二、DMC算法在"吹牛"游戏中的应用

2.1 游戏规则

"吹牛"是一种简单而有趣的骰子游戏,其规则如下:

  1. 两个玩家,每人三个骰子
  2. 游戏开始时,两人同时投骰子,每个人只能看到自己的点数
  3. 玩家轮流喊出自己认为的两人骰子的最大公约数
  4. 后手可以喊出比先手更大的公约数,或选择"不相信"
  5. 如果有人选择"不相信",则进入结算阶段
  6. 结算时,如果实际情况符合先手的喊叫,则先手胜;否则后手胜
  7. 点数为1的骰子可以作为任意点数参与结算

2.2 状态空间和动作空间

  1. 动作空间:从"1个1"到"6个6",共36个动作,再加上"不相信",总共37个动作
  2. 状态空间:
    • 未结算阶段:由自己的点数和历史动作组成
    • 结算阶段:由自己和对方点数以及历史动作组成

2.3 环境代码实现

为了适配DMC算法,我们需要实现一个"吹牛"游戏环境。以下是环境代码的主要组成部分:

class BoastingEnv:
    def __init__(self, objective):
        # 初始化环境
        pass

    def reset(self):
        # 重置游戏状态
        pass

    def step(self, action):
        # 执行一步动作,返回新的状态、奖励和是否结束
        pass

    def get_legal_action(self):
        # 获取合法动作
        pass

    def decide_the_winner(self):
        # 决定胜负
        pass

    # 其他辅助方法

这个环境实现了resetstep等方法,可以对动作和状态进行编码,并根据游戏结果给予正负奖励。

2.4 DMC算法在"吹牛"游戏中的实现

在"吹牛"游戏中实现DMC算法时,我们需要注意以下几点:

  1. 状态编码:

    • 对自己的骰子点数进行编码
    • 对历史动作序列进行编码
  2. 动作编码:

    • 使用6x7的矩阵来表示动作,其中6行表示骰子数量(1-6),7列表示点数(1-6)和"不相信"动作
  3. 网络结构:

    • 输入层:状态编码和动作编码
    • 隐藏层:多个全连接层进行特征提取
    • 输出层:一个标量,表示当前状态下采取该动作的Q值
  4. 训练过程:

    • 使用epsilon-greedy策略进行探索
    • 每局游戏结束后,根据最终结果计算每个动作的奖励
    • 使用MSE损失函数更新网络参数
  5. 评估:

    • 定期保存模型,并与随机策略或人类玩家进行对战,评估模型性能

三、实验结果与分析

3.1 训练过程

在训练过程中,我们可以观察到以下几个现象:

  1. 损失函数变化:
    训练初期,损失函数波动较大,随着训练的进行,损失函数逐渐稳定在一个较小的值。这表明模型正在逐步学习游戏的策略。

  2. 回报变化:
    由于双方都是强化学习模型,且网络和更新参数相同,训练过程中的回报接近于0是合理的。然而,我们观察到先手玩家(firsthand)的回报始终保持在略大于0的水平,这说明"吹牛"游戏存在一定的先手优势。

3.2 对局效果展示

经过充分训练后,我们可以将模型与人类玩家进行对战,以评估其性能。以下是一个简短的对局示例:

玩家:投出骰子 [2, 3, 5]
模型:说 2个3
玩家:说 3个3
模型:说 3个4
玩家:说 3个5
模型:不相信
结算:玩家骰子 [2, 3, 5],模型骰子 [1, 4, 6]
结果:模型胜利

从这个示例中,我们可以看到模型不仅能够理解游戏规则,还能根据对手的动作做出合理的决策。

3.3 模型评估

为了全面评估模型的性能,我们进行了以下测试:

  1. 与随机策略对战:
    在100局游戏中,训练后的模型胜率达到85%以上,显示出明显的优势。

  2. 与人类玩家对战:
    邀请多名人类玩家与模型进行对战。在50局游戏中,模型的胜率约为70%,表现出较强的竞争力。

  3. 策略分析:
    通过观察模型的行为,我们发现:

    • 模型倾向于在开局时保守喊牌,随着游戏进行逐渐变得激进
    • 模型能够根据对手的喊牌历史调整自己的策略
    • 在面临高风险决策时,模型表现出了合理的判断能力

3.4 优势与不足

优势:

  1. 强大的学习能力:模型能够通过自我对弈快速学习游戏策略
  2. 适应性强:能够根据对手的行为调整自身策略
  3. 决策一致性:不受情绪和疲劳影响,能够始终保持理性决策

不足:

  1. 缺乏创新性:模型可能会陷入局部最优解,难以发现新的策略
  2. 对异常情况适应能力较弱:面对极端罕见的情况可能会做出不合理决策
  3. 解释性不足:难以解释模型为什么做出某个具体决策

四、结论与展望

深度蒙特卡洛算法在"吹牛"游戏中展现出了强大的学习和决策能力。通过将深度神经网络与蒙特卡洛方法相结合,DMC算法能够有效地处理大规模动作空间和部分可观测状态,为解决复杂的强化学习问题提供了新的思路。

在未来的研究中,我们可以从以下几个方面进行改进和扩展:

  1. 引入自适应学习率和正则化技术,进一步提高模型的泛化能力
  2. 探索更复杂的网络结构,如注意力机制和图神经网络,以捕捉游戏中的长期依赖关系
  3. 结合对抗性训练和多智能体学习,提高模型在面对不同策略对手时的适应能力
  4. 开发可解释性技术,帮助我们理解模型的决策过程,从而改进算法设计

总的来说,深度蒙特卡洛算法为强化学习在复杂博弈问题上的应用开辟了新的道路。随着算法的不断改进和计算能力的提升,我们有理由相信,这类算法将在更广泛的领域中发挥重要作用,如金融交易、自动驾驶和机器人控制等。

参考文献

  1. Zha, D., Xie, J., Ma, W., Zhang, S., Lian, X., Hu, X., & Liu, J. (2021). DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning. arXiv preprint arXiv:2106.06135.

  2. Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., … & Hassabis, D. (2017). Mastering the game of go without human knowledge. Nature, 550(7676), 354-359.

  3. Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.


让我们来比较一下策略梯度算法和深度蒙特卡洛(DMC)算法。这两种算法都是强化学习中的重要方法,但它们在原理和应用上有一些显著的区别。我们将从多个角度进行详细的比较分析。

一、基本原理

1.1 策略梯度算法

策略梯度算法是一类直接优化策略的方法。它的核心思想是通过梯度上升来直接优化策略函数,使得期望回报最大化。策略梯度算法通常使用神经网络来表示策略,网络的输出是在给定状态下采取各个动作的概率分布。

策略梯度的基本更新公式如下:

∇ θ J ( θ ) = E π θ [ ∇ θ log ⁡ π θ ( a ∣ s ) Q π θ ( s , a ) ] \nabla_\theta J(\theta) = E_{\pi_\theta}[\nabla_\theta \log \pi_\theta(a|s) Q^{\pi_\theta}(s,a)] θJ(θ)=Eπθ[θlogπθ(as)Qπθ(s,a)]

其中, θ \theta θ 是策略网络的参数, π θ \pi_\theta πθ 是当前策略, Q π θ ( s , a ) Q^{\pi_\theta}(s,a) Qπθ(s,a) 是动作价值函数。

1.2 深度蒙特卡洛算法(DMC)

深度蒙特卡洛算法是一种 基于价值 基于价值 基于价值的方法,它结合了深度学习和蒙特卡洛方法。DMC使用深度神经网络来估计状态-动作值函数( Q 函数 Q函数 Q函数),并通过蒙特卡洛采样来更新这个估计。

DMC的基本更新公式如下:

Q ( s t , a t ) ← Q ( s t , a t ) + α [ G t − Q ( s t , a t ) ] Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha [G_t - Q(s_t, a_t)] Q(st,at)Q(st,at)+α[GtQ(st,at)]

其中, G t G_t Gt 是从时间步 t t t 开始到回合结束的累积回报, α \alpha α 是学习率。

二、主要区别

2.1 优化目标

  1. 策略梯度:直接优化策略函数,目标是最大化期望回报。
  2. DMC:优化值函数(Q函数),通过选择最大Q值的动作来隐式地改进策略。

2.2 输出

  1. 策略梯度:输出动作的概率分布。
  2. DMC:输出每个状态-动作对的估计值。

2.3 采样效率

  1. 策略梯度:通常需要大量样本来估计梯度,采样效率相对较低。
  2. DMC:可以通过回合内的每个时间步更新值估计,采样效率较高。

2.4 方差

  1. 策略梯度:梯度估计通常具有高方差,需要使用基线(baseline)等技术来减少方差。
  2. DMC:由于使用完整的回报来更新,方差相对较大,但可以通过并行采样等方法来减少。

2.5 收敛性

  1. 策略梯度:在某些情况下可能收敛到局部最优解。
  2. DMC:理论上可以收敛到最优值函数,但在实践中可能受到函数近似和采样的影响。

2.6 适用场景

  1. 策略梯度:适用于连续动作空间和随机策略。
  2. DMC:更适合离散动作空间和确定性策略。

三、在"吹牛"游戏中的应用比较

让我们具体分析这两种算法在"吹牛"游戏中的应用差异:

3.1 状态表示

  1. 策略梯度:可以直接使用原始状态(自己的骰子点数和历史动作)作为输入。
  2. DMC:通常需要更精细的状态编码,包括对手可能的骰子分布的估计。

3.2 动作选择

  1. 策略梯度:输出每个可能动作的概率,可以直接采样或使用确定性策略。
  2. DMC:需要计算每个可能动作的Q值,然后选择Q值最高的动作。

3.3 探索与利用

  1. 策略梯度:通过策略的随机性自然地实现探索。
  2. DMC:通常需要额外的探索策略,如ε-贪心。

3.4 学习过程

  1. 策略梯度:可以在每个时间步更新策略,适合在线学习。
  2. DMC:通常在回合结束时更新,更适合批量学习。

3.5 处理不确定性

  1. 策略梯度:能够自然地处理游戏中的不确定性,输出的概率分布反映了这种不确定性。
  2. DMC:需要通过多次采样或使用更复杂的网络结构(如贝叶斯神经网络)来处理不确定性。

四、实验比较

为了更直观地比较两种算法在"吹牛"游戏中的表现,我们可以设计以下实验:

  1. 学习速度:记录两种算法达到特定性能水平所需的训练回合数。
  2. 最终性能:在固定训练时间后,比较两种算法与随机策略和人类玩家对战的胜率。
  3. 策略多样性:分析两种算法学到的策略是否具有多样性,是否能够适应不同风格的对手。
  4. 鲁棒性:测试算法在面对噪声输入(如对手故意的错误喊叫)时的表现。

五、优势互补

虽然策略梯度和DMC各有特点,但它们并不是完全对立的。在实际应用中,我们可以考虑结合两种算法的优势:

  1. Actor-Critic方法:结合策略梯度( A c t o r Actor Actor)和值函数估计( C r i t i c Critic Critic)的优势。
  2. 多步深度蒙特卡洛:在DMC中引入多步回报,平衡偏差和方差。
  3. 软Q学习:在DMC中引入熵正则化,增加探索能力。

六、结论

策略梯度算法和深度蒙特卡洛算法都是强大的强化学习方法,在"吹牛"游戏这样的部分可观察马尔可夫决策过程中各有优势。策略梯度更适合处理游戏中的不确定性和连续决策,而DMC则在采样效率和值估计方面表现出色。

在实际应用中,选择哪种算法或如何结合它们,需要根据具体问题的特点、可用的计算资源以及对最终性能的要求来决定。无论选择哪种方法,深入理解算法的原理和特点,并进行充分的实验和调优,都是获得良好结果的关键。

未来的研究方向可能包括:开发更高效的混合算法、设计更好的神经网络结构以捕捉游戏的本质特征、探索多智能体学习在这类游戏中的应用等。这些进展将不仅推动"吹牛"游戏AI的发展,也将为更广泛的强化学习应用提供有价值的insights。


在强化学习中, 价值函数 价值函数 价值函数 策略 策略 策略是两个核心概念,分别用于评估 状态 状态 状态 状态 − 动作 状态-动作 状态动作对的价值,以及指导智能体的行为。深度强化学习通过深度神经网络来近似这些函数或策略。在此背景下,深度Q网络(DQN)和策略优化方法(如策略梯度、Actor-Critic方法)是两种主要的强化学习方法。它们的主要区别如下:

深度Q网络(DQN)

  1. 价值函数近似

    • DQN使用深度神经网络来近似状态-动作价值函数 Q ( s , a ) Q(s, a) Q(s,a),即给定状态 s s s 和动作 a a a,预测从该状态和动作开始的 未来总奖励 未来总奖励 未来总奖励
    • 价值函数 Q ( s , a ) Q(s, a) Q(s,a) 表示在状态 s s s 采取动作 a a a 时的预期回报。
  2. 目标

    • 目标是找到最优的Q值函数 Q ∗ ( s , a ) Q^*(s, a) Q(s,a),使得在任何状态下选择的动作都能最大化未来的预期回报。
    • 使用 Bellman 方程更新Q值:
      Q ( s , a ) ← Q ( s , a ) + α [ r + γ max ⁡ a ′ Q ( s ′ , a ′ ) − Q ( s , a ) ] Q(s, a) \leftarrow Q(s, a) + \alpha \left[ r + \gamma \max_{a'} Q(s', a') - Q(s, a) \right] Q(s,a)Q(s,a)+α[r+γmaxaQ(s,a)Q(s,a)]
      其中, α \alpha α 是学习率, γ \gamma γ 是折扣因子, r r r 是即时奖励, s ′ s' s 是下一个状态。
  3. 行为策略

    • DQN通常使用 ϵ \epsilon ϵ-贪婪策略来选择动作,即大部分时间选择当前 Q Q Q值最大的动作 贪婪 贪婪 贪婪,但偶尔随机选择动作 探索 探索 探索
  4. 训练方法

    • 使用经验回放(Experience Replay)和固定目标网络(Target Network)来提高训练的稳定性。

策略优化方法

  1. 策略直接近似

    • 策略优化方法直接使用深度神经网络来近似策略 π ( a ∣ s ) \pi(a | s) π(as),即给定状态 s s s,输出动作 a a a 的概率分布。
    • 策略 π \pi π 表示在状态 s s s 下采取动作 a a a 的概率。
  2. 目标

    • 目标是找到最优的策略 π ∗ ( a ∣ s ) \pi^*(a | s) π(as),使得从任何状态出发的行为策略都能最大化未来的总奖励。

    • 通过最大化预期回报来优化策略参数 θ \theta θ

      J ( θ ) = E π θ [ ∑ t = 0 ∞ γ t r t ] J(\theta) = \mathbb{E}_{\pi_\theta}\left[ \sum_{t=0}^{\infty} \gamma^t r_t \right] J(θ)=Eπθ[t=0γtrt]

      使用策略梯度方法,如 REINFORCE 算法,计算梯度并更新策略网络的参数:

      ∇ θ J ( θ ) = E π θ [ ∇ θ log ⁡ π θ ( a ∣ s ) Q π ( s , a ) ] \nabla_\theta J(\theta) = \mathbb{E}_{\pi_\theta}\left[ \nabla_\theta \log \pi_\theta(a|s) Q^\pi(s, a) \right] θJ(θ)=Eπθ[θlogπθ(as)Qπ(s,a)]

  3. 行为策略

策略直接决定了如何采取动作,不需要 ϵ \epsilon ϵ-贪婪策略。策略网络输出的动作概率直接用于采样动作。

  1. 训练方法
    • 使用策略梯度方法来更新策略网络。
    • 在 Actor-Critic 方法中,使用两个网络:一个近似策略 A c t o r Actor Actor,一个近似价值函数 C r i t i c Critic Critic C r i t i c Critic Critic A c t o r Actor Actor 提供价值估计,从而优化策略。

总结

  • DQN 通过近似 Q Q Q值函数来间接优化策略,主要关注 状态 − 动作 状态-动作 状态动作对的价值,并通过 ϵ \epsilon ϵ-贪婪策略进行 探索 探索 探索 利用 利用 利用
  • 策略优化方法 直接近似并优化策略 π \pi π,通过最大化预期回报来更新策略参数,策略直接决定动作选择,无需额外的探索策略。

这两种方法在解决不同类型的强化学习问题时各有优势和适用场景。


DMC(Deep Monte Carlo) 和 DQN(Deep Q-Network)是两种不同的深度强化学习方法。以下是它们的详细比较:

深度蒙特卡洛(Deep Monte Carlo, DMC)

深度蒙特卡洛方法利用蒙特卡洛采样技术来估计 价值函数 价值函数 价值函数,并使用深度神经网络来近似这些价值函数。

  1. 价值函数近似

    • DMC 使用深度神经网络来近似状态价值函数 V ( s ) V(s) V(s) 或动作价值函数 Q ( s , a ) Q(s, a) Q(s,a)
    • 通过从 状态 − 动作 状态-动作 状态动作对(或 状态 状态 状态)开始的完整轨迹来估计回报,并使用这些回报来更新网络参数。
  2. 目标

    • 目标是通过最大化从 状态 状态 状态 s s s 状态 − 动作 状态-动作 状态动作 ( s , a ) (s, a) (s,a) 开始的估计回报来优化价值函数。

    • 使用蒙特卡洛方法,计算从给定状态或状态-动作对开始的总回报:

      G t = ∑ k = 0 T − t γ k r t + k G_t = \sum_{k=0}^{T-t} \gamma^k r_{t+k} Gt=k=0Ttγkrt+k

      其中 T T T 是终止时间步, γ \gamma γ 是折扣因子。

  3. 训练方法

    • 蒙特卡洛方法通常在每条轨迹结束后进行一次更新,这意味着更新频率较低,但每次更新利用整条轨迹的信息。

    • 使用回报 G t G_t Gt 来更新神经网络的参数。例如:

      θ ← θ + α ( G t − V ( s t ∣ θ ) ) ∇ θ V ( s t ∣ θ ) \theta \leftarrow \theta + \alpha \left( G_t - V(s_t | \theta) \right) \nabla_\theta V(s_t | \theta) θθ+α(GtV(stθ))θV(stθ)

      或者对于动作价值函数 Q ( s , a ) Q(s, a) Q(s,a)

      θ ← θ + α ( G t − Q ( s t , a t ∣ θ ) ) ∇ θ Q ( s t , a t ∣ θ ) \theta \leftarrow \theta + \alpha \left( G_t - Q(s_t, a_t | \theta) \right) \nabla_\theta Q(s_t, a_t | \theta) θθ+α(GtQ(st,atθ))θQ(st,atθ)

  4. 行为策略

    • 可以使用 ϵ \epsilon ϵ-贪婪策略或其他策略来生成行为策略,以便进行探索和利用。

深度Q网络(Deep Q-Network, DQN)

DQN 是基于Q学习的深度强化学习方法,主要用于离散动作空间的任务。

  1. 价值函数近似

    • DQN 使用深度神经网络来近似动作价值函数 Q ( s , a ) Q(s, a) Q(s,a),即给定状态和动作,预测对应的 Q Q Q值。
  2. 目标

    • 目标是找到最优的Q值函数 Q ∗ ( s , a ) Q^*(s, a) Q(s,a),使得在任何状态下选择的动作都能最大化未来的预期回报。

    • 使用 Bellman 方程和经验回放来更新 Q Q Q值:

      Q ( s , a ) ← Q ( s , a ) + α [ r + γ max ⁡ a ′ Q ( s ′ , a ′ ) − Q ( s , a ) ] Q(s, a) \leftarrow Q(s, a) + \alpha \left[ r + \gamma \max_{a'} Q(s', a') - Q(s, a) \right] Q(s,a)Q(s,a)+α[r+γmaxaQ(s,a)Q(s,a)]

  3. 训练方法

    • 经验回放:使用经验回放池存储和采样经验,以打破数据相关性。
    • 目标网络:使用目标网络(Target Network)来稳定训练过程,目标网络参数更新速度较慢。
  4. 行为策略

    • 通常使用 ϵ \epsilon ϵ-贪婪策略来选择动作,即大部分时间选择当前 Q Q Q值最大的动作(贪婪),但偶尔随机选择动作(探索)。

比较

  1. 价值估计方法

    • DMC:通过蒙特卡洛采样估计完整轨迹的回报,更新频率较低,但利用了完整轨迹信息。
    • DQN:使用 Bellman 方程进行逐步更新,更新频率较高,但每次更新仅利用局部信息。
  2. 策略

    • DMC:可以使用任意策略生成轨迹,包括 ϵ \epsilon ϵ-贪婪策略。
    • DQN:通常使用 ϵ \epsilon ϵ-贪婪策略进行 探索 探索 探索 利用 利用 利用
  3. 训练稳定性

    • DMC:每次更新利用整条轨迹的信息,更新频率较低,容易受到高方差的影响。
    • DQN:通过经验回放和目标网络来提高训练的稳定性,更新频率较高。
  4. 适用场景

    • DMC:适用于轨迹较短、可以 完整采样回报 完整采样回报 完整采样回报的环境。
    • DQN:适用于离散动作空间和需要频繁更新的环境。

总结

  • DMC 使用蒙特卡洛采样估计完整轨迹的回报,适合轨迹较短且可以完整采样回报的环境。
  • DQN 采用 Bellman 方程逐步更新Q值,适用于离散动作空间和需要频繁更新的环境。

选择哪种方法取决于具体问题的特性,如轨迹长度、动作空间的离散性或连续性,以及对训练稳定性的要求。


在强化学习中,高方差问题是指在估计策略或价值函数时,由于样本回报的变动性大,导致估计结果不稳定。这种现象在蒙特卡洛方法(包括深度蒙特卡洛,DMC)中特别常见,因为它们依赖于完整轨迹的回报估计。以下是对高方差问题的详细解析:

高方差问题的来源

  1. 轨迹长度

    • 在蒙特卡洛方法中,回报 G t = ∑ k = 0 T − t γ k r t + k G_t = \sum_{k=0}^{T-t} \gamma^k r_{t+k} Gt=k=0Ttγkrt+k 是从某个时间步 t t t 开始直到终止时间步 T T T 的累计回报。
    • 如果轨迹较长,那么累计回报的方差会很大,因为它是多个随机变量的和。
  2. 折扣因子

    • 折扣因子 γ \gamma γ 在算出回报时会逐步减小未来奖励的权重,但仍然会因为轨迹的长度而导致方差积累。
    • 小的 γ \gamma γ 值可以减少远期回报的影响,但也可能导致策略过于短视;大的 γ \gamma γ 值则会增加方差。
  3. 环境的随机性

    • 环境中的随机性(如随机动作选择、随机状态转移)会导致同一策略在不同轨迹中的回报差异很大。
    • 高度随机的环境会进一步增加每条轨迹的回报方差。
  4. 策略的探索性

    • 使用探索性策略(如 ϵ \epsilon ϵ-贪婪策略)会导致策略在不同轨迹中选择不同的动作,从而导致回报的高方差。
    • 探索动作可能导致极端的回报(非常高或非常低),增加方差。

高方差问题的影响

  1. 参数更新不稳定

    • 高方差会导致参数更新不稳定,因为每次更新的梯度可能会有很大的波动。
    • 这会使得模型在训练过程中难以收敛,表现为训练曲线的剧烈波动。
  2. 收敛速度慢

    • 高方差会导致算法需要更多的样本来得到准确的估计,从而减慢收敛速度。
    • 即使有大量的数据,高方差也会使得价值函数或策略的估计不准确。
  3. 次优策略

    • 由于高方差,策略和价值函数的估计会受到噪声的影响,可能导致学习到次优的策略。
    • 模型可能会误认为某些策略是最优的,实际上它们只是受到了噪声的影响。

缓解高方差问题的方法

  1. 使用时间差分方法(TD)

    • 时间差分方法(如DQN)通过逐步更新而不是等待完整轨迹结束来进行更新,这可以显著降低方差。
    • TD方法使用当前状态和下一个状态之间的差异进行更新,减少了方差的累积。
  2. 引入基线(Baseline)

    • 在策略梯度方法中,引入一个基线函数(通常是状态价值函数 V ( s ) V(s) V(s))来减少梯度估计的方差。
    • 基线函数的引入不会改变期望值,但可以减少梯度的方差。
  3. 使用目标网络和经验回放

    • 目标网络(Target Network)和经验回放(Experience Replay)技术可以帮助稳定训练过程,减少方差的影响。
    • 目标网络参数更新较慢,可以提供更稳定的目标值;经验回放打破了数据的相关性,减少了方差。
  4. 策略正则化

    • 添加正则化项来约束策略的变化,防止策略在训练过程中出现过大的波动。
    • 使用熵正则化来鼓励策略的探索性,减少策略的剧烈波动。
  5. 降低学习率

    • 降低学习率可以减少每次更新的幅度,缓解高方差带来的不稳定性。
    • 尽管会减慢收敛速度,但可以提高训练的稳定性。

总结

高方差问题在强化学习中特别是蒙特卡洛方法中非常常见,它会导致参数更新不稳定、收敛速度慢、学习到次优策略等问题。通过使用时间差分方法、引入基线、使用目标网络和经验回放、策略正则化以及降低学习率等方法,可以有效缓解高方差问题,提高训练的稳定性和效率。


  • 8
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

步子哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值