逻辑回归算法全解析:从Sigmoid函数与二分类模型构建,到One-Vs-Rest和Softmax多分类策略的理论与实践

#王者杯·14天创作挑战营·第1期#

前言

在机器学习的众多算法中,逻辑回归是一类经典且应用广泛的分类算法。

尽管其名称带有 “回归” 二字,却在分类任务中发挥着重要作用,这一特性使其成为理解机器学习算法原理的重要切入点。

从实际应用场景来看,无论是医学诊断中判断疾病的有无,还是金融领域预测客户的信用风险,逻辑回归都能凭借简洁的模型结构与高效的计算性能提供可靠的解决方案。

本文将深入剖析逻辑回归算法,从基础概念出发,逐步展开公式推导、参数迭代更新过程,并延伸至多分类问题的解决方法,同时结合代码实例,帮助读者系统掌握逻辑回归算法的核心原理与实践应用。

1、逻辑回归概述

1.1、什么是逻辑回归

  逻辑回归不是一个回归的算法,逻辑回归是一个分类的算法,好比卡巴斯基不是司机,红烧狮子头没有狮子头一样。 那为什么逻辑回归不叫逻辑分类?因为逻辑回归算法是基于多元线性回归的算法。而正因为此,逻辑回归这个分类算法是线性的分类器。未来我们要学的基于决策树的一系列算法,基于神经网络的算法等那些是非线性的算法。SVM 支持向量机的本质是线性的,但是也可以通过内部的核函数升维来变成非线性的算法。

  逻辑回归中对应一条非常重要的曲线S型曲线,对应的函数是Sigmoid函数:

它有一个非常棒的特性,其导数可以用其自身表示:

import numpy as np
import matplotlib.pyplot as plt
def sigmoid(x):
    return 1/(1 + np.exp(-x))
x = np.linspace(-5,5,100)
y = sigmoid(x)
plt.plot(x,y,color = 'green')

1.2、Sigmoid函数介绍

  逻辑回归就是在多元线性回归基础上把结果缩放到 0 ~ 1 之间。 h θ ( x ) h_{\theta}(x) hθ(x) 越接近 1 越是正例, h θ ( x ) h_{\theta}(x) hθ(x) 越接近 0 越是负例,根据中间 0.5 将数据分为二类。其中 h θ ( x ) h_{\theta}(x) hθ(x) 就是概率函数~

  我们知道分类器的本质就是要找到分界,所以当我们把 0.5 作为分类边界时,我们要找的就是 y ^ = h θ ( x ) = 1 1 + e − θ T x = 0.5 \hat{y} = h_{\theta}(x) = \frac{1}{1 + e^{-\theta^Tx}} = 0.5 y^=hθ(x)=1+eθTx1=0.5 ,即 z = θ T x = 0 z = \theta^Tx = 0 z=θTx=0 时, θ \theta θ 的解~

求解过程如下:

  什么事情,都要做到知其然,知其所以然,我们知道二分类有个特点就是正例的概率 + 负例的概率 = 1。一个非常简单的试验是只有两种可能结果的试验,比如正面或反面,成功或失败,有缺陷或没有缺陷,病人康复或未康复等等。为方便起见,记这两个可能的结果为 0 和 1,下面的定义就是建立在这类试验基础之上的。 如果随机变量 x 只取 0 和 1 两个值,并且相应的概率为:

  则称随机变量 x 服从参数为 p 的Bernoulli伯努利分布( 0-1分布),则 x 的概率函数可写:

  • f ( x ∣ p ) = { p x ( 1 − p ) 1 − x , x = 1 、 0 0 , x ≠ 1 、 0 f(x | p) = \begin{cases}p^x(1 - p)^{1-x}, &x = 1、0\\0,& x \neq 1、0\end{cases} f(xp)={px(1p)1x,0,x=10x=10

  逻辑回归二分类任务会把正例的 label 设置为 1,负例的 label 设置为 0,对于上面公式就是 x = 0、1。

2、逻辑回归公式推导

2.1、损失函数推导

  这里我们依然会用到最大似然估计思想,根据若干已知的 X,y(训练集) 找到一组 θ \theta θ 使得 X 作为已知条件下 y 发生的概率最大。

整合到一起(二分类就两种情况:1、0)得到逻辑回归表达式:

我们假设训练样本相互独立,那么似然函数表达式为:

化简,累乘变累加:

  总结,得到了逻辑回归的表达式,下一步跟线性回归类似,构建似然函数,然后最大似然估计,最终推导出 θ \theta θ 的迭代更新表达式。只不过这里用的不是梯度下降,而是梯度上升,因为这里是最大化似然函数。通常我们一提到损失函数,往往是求最小,这样我们就可以用梯度下降来求解。最终损失函数就是上面公式加负号的形式:

2.2、立体化呈现

from sklearn import datasets
from sklearn.linear_model import LogisticRegression
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from sklearn.preprocessing import scale # 数据标准化Z-score

# 1、加载乳腺癌数据
data = datasets.load_breast_cancer()
X, y = scale(data['data'][:, :2]), data['target']

# 2、求出两个维度对应的数据在逻辑回归算法下的最优解
lr = LogisticRegression()
lr.fit(X, y)

# 3、分别把两个维度所对应的参数W1和W2取出来
w1 = lr.coef_[0, 0]
w2 = lr.coef_[0, 1]
print(w1, w2)

# 4、已知w1和w2的情况下,传进来数据的X,返回数据的y_predict
def sigmoid(X, w1, w2):
    z = w1*X[0] + w2*X[1]
    return 1 / (1 + np.exp(-z))

# 5、传入一份已知数据的X,y,如果已知w1和w2的情况下,计算对应这份数据的Loss损失
def loss_function(X, y, w1, w2):
    loss = 0
    # 遍历数据集中的每一条样本,并且计算每条样本的损失,加到loss身上得到整体的数据集损失
    for x_i, y_i in zip(X, y):
        # 这是计算一条样本的y_predict,即概率
        p = sigmoid(x_i, w1, w2)
        loss += -1*y_i*np.log(p)-(1-y_i)*np.log(1-p)
    return loss

# 6、参数w1和w2取值空间
w1_space = np.linspace(w1-2, w1+2, 100)
w2_space = np.linspace(w2-2, w2+2, 100)
loss1_ = np.array([loss_function(X, y, i, w2) for i in w1_space])
loss2_ = np.array([loss_function(X, y, w1, i) for i in w2_space])

# 7、数据可视化
fig1 = plt.figure(figsize=(12, 9))
plt.subplot(2, 2, 1)
plt.plot(w1_space, loss1_)

plt.subplot(2, 2, 2)
plt.plot(w2_space, loss2_)

plt.subplot(2, 2, 3)
w1_grid, w2_grid = np.meshgrid(w1_space, w2_space)
loss_grid = loss_function(X, y, w1_grid, w2_grid)
plt.contour(w1_grid, w2_grid, loss_grid,20)

plt.subplot(2, 2, 4)
plt.contourf(w1_grid, w2_grid, loss_grid,20)
plt.savefig('./4-损失函数可视化.png',dpi = 200)

# 8、3D立体可视化
fig2 = plt.figure(figsize=(12,6))
ax = Axes3D(fig2)
ax.plot_surface(w1_grid, w2_grid, loss_grid,cmap = 'viridis')
plt.xlabel('w1',fontsize = 20)
plt.ylabel('w2',fontsize = 20)
ax.view_init(30,-30)
plt.savefig('./5-损失函数可视化.png',dpi = 200)

3、逻辑回归迭代公式

3.1、函数特性

  逻辑回归参数更新规则和,线性回归一模一样!

  • α \alpha α 表示学习率

逻辑回归函数:

  • z = θ T x z = \theta^Tx z=θTx

逻辑回归函数求导时有一个特性,这个特性将在下面的推导中用到,这个特性为:

回到逻辑回归损失函数求导:

J ( θ ) = − ∑ i = 1 n ( y ( i ) ln ⁡ ( h θ ( x i ) ) + ( 1 − y ( i ) ) ln ⁡ ( 1 − h θ ( x ( i ) ) ) ) J(\theta) = -\sum\limits_{i = 1}^n(y^{(i)}\ln(h_{\theta}(x^{i})) + (1-y^{(i)})\ln(1-h_{\theta}(x^{(i)}))) J(θ)=i=1n(y(i)ln(hθ(xi))+(1y(i))ln(1hθ(x(i))))

3.2、求导过程

∂ ∂ θ j J ( θ ) = − ∑ i = 1 n ( y ( i ) 1 h θ ( x ( i ) ) ∂ ∂ θ j h θ ( x i ) + ( 1 − y ( i ) ) 1 1 − h θ ( x ( i ) ) ∂ ∂ θ j ( 1 − h θ ( x ( i ) ) ) ) = − ∑ i = 1 n ( y ( i ) 1 h θ ( x ( i ) ) ∂ ∂ θ j h θ ( x ( i ) ) − ( 1 − y ( i ) ) 1 1 − h θ ( x ( i ) ) ∂ ∂ θ j h θ ( x ( i ) ) ) = − ∑ i = 1 n ( y ( i ) 1 h θ ( x ( i ) ) − ( 1 − y ( i ) ) 1 1 − h θ ( x ( i ) ) ) ∂ ∂ θ j h θ ( x ( i ) ) = − ∑ i = 1 n ( y ( i ) 1 h θ ( x ( i ) ) − ( 1 − y ( i ) ) 1 1 − h θ ( x ( i ) ) ) h θ ( x ( i ) ) ( 1 − h θ ( x ( i ) ) ) ∂ ∂ θ j θ T x = − ∑ i = 1 n ( y ( i ) ( 1 − h θ ( x ( i ) ) ) − ( 1 − y ( i ) ) h θ ( x ( i ) ) ) ∂ ∂ θ j θ T x = − ∑ i = 1 n ( y ( i ) − h θ ( x ( i ) ) ) ∂ ∂ θ j θ T x = ∑ i = 1 n ( h θ ( x ( i ) ) − y ( i ) ) x j ( i ) \begin{aligned} \frac{\partial}{\partial{\theta_j}}J(\theta) &= -\sum\limits_{i = 1}^n(y^{(i)}\frac{1}{h_{\theta}(x^{(i)})}\frac{\partial}{\partial_{\theta_j}}h_{\theta}(x^{i}) + (1-y^{(i)})\frac{1}{1-h_{\theta}(x^{(i)})}\frac{\partial}{\partial_{\theta_j}}(1-h_{\theta}(x^{(i)}))) \\\\&=-\sum\limits_{i = 1}^n(y^{(i)}\frac{1}{h_{\theta}(x^{(i)})}\frac{\partial}{\partial_{\theta_j}}h_{\theta}(x^{(i)}) - (1-y^{(i)})\frac{1}{1-h_{\theta}(x^{(i)})}\frac{\partial}{\partial_{\theta_j}}h_{\theta}(x^{(i)}))\\\\&=-\sum\limits_{i = 1}^n(y^{(i)}\frac{1}{h_{\theta}(x^{(i)})} - (1-y^{(i)})\frac{1}{1-h_{\theta}(x^{(i)})})\frac{\partial}{\partial_{\theta_j}}h_{\theta}(x^{(i)})\\\\&=-\sum\limits_{i = 1}^n(y^{(i)}\frac{1}{h_{\theta}(x^{(i)})} - (1-y^{(i)})\frac{1}{1-h_{\theta}(x^{(i)})})h_{\theta}(x^{(i)})(1-h_{\theta}(x^{(i)}))\frac{\partial}{\partial_{\theta_j}}\theta^Tx\\\\&=-\sum\limits_{i = 1}^n(y^{(i)}(1-h_{\theta}(x^{(i)})) - (1-y^{(i)})h_{\theta}(x^{(i)}))\frac{\partial}{\partial_{\theta_j}}\theta^Tx\\\\&=-\sum\limits_{i = 1}^n(y^{(i)} - h_{\theta}(x^{(i)}))\frac{\partial}{\partial_{\theta_j}}\theta^Tx\\\\&=\sum\limits_{i = 1}^n(h_{\theta}(x^{(i)}) -y^{(i)})x_j^{(i)}\end{aligned} θjJ(θ)=i=1n(y(i)hθ(x(i))1θjhθ(xi)+(1y(i))1hθ(x(i))1θj(1hθ(x(i))))=i=1n(y(i)hθ(x(i))1θjhθ(x(i))(1y(i))1hθ(x(i))1θjhθ(x(i)))=i=1n(y(i)hθ(x(i))1(1y(i))1hθ(x(i))1)θjhθ(x(i))=i=1n(y(i)hθ(x(i))1(1y(i))1hθ(x(i))1)hθ(x(i))(1hθ(x(i)))θjθTx=i=1n(y(i)(1hθ(x(i)))(1y(i))hθ(x(i)))θjθTx=i=1n(y(i)hθ(x(i)))θjθTx=i=1n(hθ(x(i))y(i))xj(i)

求导最终的公式:

这里我们发现导函数的形式和多元线性回归一样~

逻辑回归参数迭代更新公式:

3.3、代码实战

import numpy as np
from sklearn import datasets
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split

# 1、数据加载
iris = datasets.load_iris()

# 2、数据提取与筛选
X = iris['data']
y = iris['target']
cond = y != 2
X = X[cond]
y = y[cond]

# 3、数据拆分
X_train,X_test,y_train,y_test = train_test_split(X,y)

# 4、模型训练
lr = LogisticRegression()
lr.fit(X_train, y_train)

# 5、模型预测
y_predict = lr.predict(X_test)
print('测试数据保留类别是:',y_test)
print('测试数据算法预测类别是:',y_predict)
print('测试数据算法预测概率是:\n',lr.predict_proba(X_test))

结论:

  • 通过数据提取与筛选,创建二分类问题
  • 类别的划分,通过概率比较大小完成了
# 线性回归方程
b = lr.intercept_
w = lr.coef_

# 逻辑回归函数
def sigmoid(z):
    return 1/(1 + np.exp(-z))

# y = 1 概率
z = X_test.dot(w.T) + b
p_1 = sigmoid(z)

# y = 0 概率
p_0 = 1 - p_1

# 最终结果
p = np.concatenate([p_0,p_1],axis = 1)
p

结论:

  • 线性方程,对应方程 z z z
  • sigmoid函数,将线性方程转变为概率
  • 自己求解概率和直接使用LogisticRegression结果一样,可知计算流程正确

4、逻辑回归做多分类

4.1、One-Vs-Rest思想

  在上面,我们主要使用逻辑回归解决二分类的问题,那对于多分类的问题,也可以用逻辑回归来解决!

多分类问题:

  • 将邮件分为不同类别/标签:工作(y=1),朋友(y=2),家庭(y=3),爱好(y=4)
  • 天气分类:晴天(y=1),多云天(y=2),下雨天(y=3),下雪天(y=4)
  • 医学图示:没生病(y=1),感冒(y=2),流感(y=3)
  • ……

上面都是多分类问题。

假设我们要解决一个分类问题,该分类问题有三个类别,分别用△,□ 和 × 表示,每个实例有两个属性,如果把属性 1 作为 X 轴,属性 2 作为 Y 轴,训练集的分布可以表示为下图:

  One-Vs-Rest(ovr)的思想是把一个多分类的问题变成多个二分类的问题。转变的思路就如同方法名称描述的那样,选择其中一个类别为正类(Positive),使其他所有类别为负类(Negative)。比如第一步,我们可以将 △所代表的实例全部视为正类,其他实例全部视为负类,得到的分类器如图:

同理我们把 × 视为正类,其他视为负类,可以得到第二个分类器:

最后,第三个分类器是把 □ 视为正类,其余视为负类:

  对于一个三分类问题,我们最终得到 3 个二元分类器。在预测阶段,每个分类器可以根据测试样本,得到当前类别的概率。即 P(y = i | x; θ),i = 1, 2, 3。选择计算结果最高的分类器,其所对应类别就可以作为预测结果。

One-Vs-Rest 作为一种常用的二分类拓展方法,其优缺点也十分明显:

  • 优点:普适性还比较广,可以应用于能输出值或者概率的分类器,同时效率相对较好,有多少个类别就训练多少个分类器。
  • 缺点:很容易造成训练集样本数量的不平衡(Unbalance),尤其在类别较多的情况下,经常容易出现正类样本的数量远远不及负类样本的数量,这样就会造成分类器的偏向性。

4.2、代码实战

import numpy as np
from sklearn import datasets
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split

# 1、数据加载
iris = datasets.load_iris()

# 2、数据提取
X = iris['data']
y = iris['target']

# 3、数据拆分
X_train,X_test,y_train,y_test = train_test_split(X,y)
# 4、模型训练
lr = LogisticRegression(multi_class = 'ovr')
lr.fit(X_train, y_train)
# 5、模型预测
y_predict = lr.predict(X_test)
print('测试数据保留类别是:',y_test)
print('测试数据算法预测类别是:',y_predict)
print('测试数据算法预测概率是:\n',lr.predict_proba(X_test))

结论:

  • 通过数据提取,创建三分类问题
  • 类别的划分,通过概率比较大小完成了
# 线性回归方程,3个方程
b = lr.intercept_
w = lr.coef_
# 逻辑回归函数
def sigmoid(z):
    return 1/(1 + np.exp(-z))

# 计算三个方程的概率
z = X_test.dot(w.T) + b
p = sigmoid(z)

# 标准化处理,概率求和为1
p = p/p.sum(axis = 1).reshape(-1,1)
p

结论:

  • 线性方程,对应方程 z z z ,此时对应三个方程
  • sigmoid函数,将线性方程转变为概率,并进行标准化处理
  • 自己求解概率和直接使用LogisticRegression结果一样

5、逻辑斯蒂回归-多分类

5.1、Softmax函数

多分类情况下,这个模型被应用到y = {1, 2, …, k}就称作Softmax回归,是逻辑回归的推广。最终可以得到它的假设函数 h θ ( x ) h_{\theta}(x) hθ(x)

举例说明:

5.3、代码实战

import numpy as np
from sklearn import datasets
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split

# 1、数据加载
iris = datasets.load_iris()

# 2、数据提取
X = iris['data']
y = iris['target']

# 3、数据拆分
X_train,X_test,y_train,y_test = train_test_split(X,y)

# 4、模型训练,使用multinomial分类器,表示多分类
lr = LogisticRegression(multi_class = 'multinomial',max_iter=5000)
lr.fit(X_train, y_train)
# 5、模型预测
y_predict = lr.predict(X_test)
print('测试数据保留类别是:',y_test)
print('测试数据算法预测类别是:',y_predict)
print('测试数据算法预测概率是:\n',lr.predict_proba(X_test))

结论:

  • 通过数据提取,创建三分类问题
  • 参数multi_class设置成multinomial表示多分类,使用交叉熵作为损失函数
  • 类别的划分,通过概率比较大小完成了
# 线性回归方程,3个方程
b = lr.intercept_
w = lr.coef_

# softmax函数
def softmax(z):
    return np.exp(z)/np.exp(z).sum(axis = 1).reshape(-1,1)

# 计算三个方程的概率
z = X_test.dot(w.T) + b
p = softmax(z)
p

结论:

  • 线性方程,对应方程 z z z ,多分类,此时对应三个方程
  • softmax函数,将线性方程转变为概率
  • 自己求解概率和直接使用LogisticRegression结果一样

尽管逻辑回归属于线性分类器,在处理复杂非线性数据时存在一定局限性,但它为后续学习更复杂的非线性算法奠定了坚实基础。

在实际应用中,逻辑回归凭借可解释性强、计算效率高的特点,仍然是许多场景下的首选算法。

随着机器学习领域的不断发展,理解并灵活运用逻辑回归,对于深入探索其他先进算法、解决实际问题具有深远意义 。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值