DynamoLLM:优化大语言模型推理集群的性能与能效

大语言模型(LLM)正在迅速成为人工智能应用的核心,但其巨大的能耗和碳排放问题也日益凸显。为此,研究人员开发了DynamoLLM系统,可以在保证性能的同时大幅降低LLM推理集群的能耗。

LLM推理集群面临的挑战

随着ChatGPT等生成式AI的普及,LLM推理服务每天要处理数以百万计的请求。为满足这一巨大需求,云服务提供商不得不部署大量高性能GPU服务器。然而,这些服务器不仅价格昂贵,还极其耗电,导致能源成本和碳排放激增。

以往针对传统数据中心的节能技术并不适用于LLM推理场景。研究人员发现,LLM推理工作负载具有独特的特征:

  1. 不同请求的计算特性差异巨大。短输入长输出的请求与长输入短输出的请求对硬件资源的需求截然不同。

  2. 工作负载波动剧烈。日间高峰期与夜间低谷期的负载可能相差10倍以上。

  3. 不同模型和服务对延迟的要求各不相同。

这些特征使得为LLM推理集群设计一个统一的能效优化方案变得异常困难。

DynamoLLM:自动调节多个维度实现能效优化

为解决上述挑战,研究人员开发了DynamoLLM系统。该系统可以根据当前工作负载的特征,自动调节以下几个关键参数:

  1. 推理服务器实例数量
  2. 模型并行度(单个模型使用的GPU数量)
  3. GPU频率

DynamoLLM采用层次化的控制架构:

  • 集群管理器负责根据预测的负载调整各类请求的资源池大小。
  • 池管理器为每
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

步子哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值