强化学习(RL)领域近年来发展迅速,涌现出许多能够在特定环境中出色完成单一目标任务的“专家级”决策智能体。然而,构建能够适应多样化环境、具备长期记忆和不确定性推理能力的“通才型”智能体,成为了新的挑战与目标。上下文强化学习(in-context RL)作为通才型 RL 的有力候选者,利用序列模型学习历史经验,在测试阶段动态地适应新情况。试想一下,如果智能体拥有强大的记忆力,能够像福尔摩斯一样,从过往的经历中汲取经验教训,那它在面对新环境时,就能迅速找到应对策略,成为真正的“百事通”!
然而,理想很丰满,现实很骨感。早期的上下文 RL 智能体受限于循环神经网络和在线学习方法,在记忆容量和规划范围上都难以突破瓶颈。Transformer 的出现,将记忆问题巧妙地转化为信息检索,为解决这一难题带来了曙光。然而,将 Transformer 与离线 RL 结合,却像是两位武林高手过招,各自的看家本领反而相互掣肘,难以施展。
AMAGO 横空出世,上下文 RL 迎来新突破!
AMAGO (Adaptive Memory Agent for achieving GOals) 这一全新算法的提出,为上下文 RL 领域带来了两大重要突破。首先,AMAGO 对离线策略 actor-critic 更新机制进行了