在人工智能的浩瀚星空中,大语言模型(LLM)如同耀眼的北极星,指引着我们探索智能的无限可能。然而,正如《冰与火之歌》中的长城将北方的严寒与南方的温暖分隔开来,语言与视觉之间也似乎存在着一道难以逾越的鸿沟。如何让语言模型理解图像、回答视觉问题,成为了AI研究者们孜孜以求的目标。本文将为您揭示一个令人惊叹的发现 - 仅仅通过调节大语言模型中的LayerNorm组件,就能让它跨越语言与视觉的界限,成为一个强大的多模态大语言模型(MLLM)。这一发现不仅大大提升了多模态模型的训练效率,更为我们理解语言模型的本质打开了一扇新的大门。让我们一同踏上这段冰与火交织的奇妙旅程吧!
🌊 潮起潮落:多模态大语言模型的演进
自从ChatGPT横空出世以来,大语言模型(LLM)在各个领域的应用如潮水般汹涌而来。然而,这些模型仅局限于文本领域,无法理解图像等其他模态的信息。为了让LLM具备多模态能力,研究人员通常采用在多模态数据上对LLM进行微调的方法。但这种方法存在巨大的计算挑战,尤其是对于参数量巨大的模型而言。
为了提高训练效率,一些研究者尝试使用LoRA(Low-Rank Adaptation)或软提示等参数高效的微调方法。然而,这些方法往往会在多模态任务上造成性能损失。因此,如何在保证性能的同时提高训练效率,成为了一个亟待解决的问题。
🔍 拨云见日:LayerNorm调优的惊人发现
本文提出了一个简单而有效的MLLM微调策略:在每个注意力模块中,我们只调整LayerNorm的权重。这个策略基于这样一个洞察:从LLM到MLLM的演变可以