在当今数据驱动的世界中,时间序列分类(TSC)已成为一项重要的任务,应用于心电图分析、家用电器使用识别等多个领域。然而,传统的深度学习方法通常被视为“黑箱”,其决策过程难以解释,这严重限制了它们在实际应用中的接受度。为了解决这一问题,我们提出了一种新的框架:MILLET(多实例学习用于局部可解释时间序列分类),它利用多实例学习的优势来实现内在的可解释性,同时保持甚至提升预测性能。
多实例学习的优势
多实例学习(MIL)是一种弱监督学习范式,它通过一组共享同一标签的元素(包)来进行学习。在TSC的上下文中,每个时间序列可以视为一个包,而包内的每个时间点则是一个实例。这种方法允许我们在不需求额外标签的情况下,发现影响模型预测的关键时间点。
Y i =