基于多实例学习的时间序列分类的内在可解释性

在当今数据驱动的世界中,时间序列分类(TSC)已成为一项重要的任务,应用于心电图分析、家用电器使用识别等多个领域。然而,传统的深度学习方法通常被视为“黑箱”,其决策过程难以解释,这严重限制了它们在实际应用中的接受度。为了解决这一问题,我们提出了一种新的框架:MILLET(多实例学习用于局部可解释时间序列分类),它利用多实例学习的优势来实现内在的可解释性,同时保持甚至提升预测性能。

多实例学习的优势

多实例学习(MIL)是一种弱监督学习范式,它通过一组共享同一标签的元素(包)来进行学习。在TSC的上下文中,每个时间序列可以视为一个包,而包内的每个时间点则是一个实例。这种方法允许我们在不需求额外标签的情况下,发现影响模型预测的关键时间点。

Y i =

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

步子哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值