反思与学习:从交互中提炼智慧

在当今人工智能(AI)不断进步的背景下,如何让大型语言模型(LLMs)不仅能“听懂”人类的指令,还能从交互中学习,成为了一个备受关注的话题。Zizhao Chen等人提出的一种新方法——RESPECT(Retrospective Learning from Interactions),将为这一领域带来新的思路。本文将对此进行深入探讨。

🎯 学习的潜力:从隐性反馈中获得的信号

在多轮交互中,用户与模型之间的互动充满了隐性反馈信号。当语言模型未能按照预期回应时,用户往往会通过重新表述请求、表达挫败感或转向其他任务来传达反馈。这些反馈不仅是任务无关的,而且在自然语言的约束子空间内,使得LLM即使在实际任务失败的情况下也能识别这些信号。因此,RESPECT利用这些信号,创造了一条无需额外注释的持续学习之路。

如图1所示,RESPECT通过回顾每轮交互的历史,解码每个动作的反馈信号。模型在与用户交互后,逐步改进其行为,从而实现持续学习。这种方法的最大亮点在于,它不依赖于外部注释,也不需要向用户主动征求反馈,而是通过模型自身的交互积累知识。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

步子哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值