在当今人工智能(AI)不断进步的背景下,如何让大型语言模型(LLMs)不仅能“听懂”人类的指令,还能从交互中学习,成为了一个备受关注的话题。Zizhao Chen等人提出的一种新方法——RESPECT(Retrospective Learning from Interactions),将为这一领域带来新的思路。本文将对此进行深入探讨。
🎯 学习的潜力:从隐性反馈中获得的信号
在多轮交互中,用户与模型之间的互动充满了隐性反馈信号。当语言模型未能按照预期回应时,用户往往会通过重新表述请求、表达挫败感或转向其他任务来传达反馈。这些反馈不仅是任务无关的,而且在自然语言的约束子空间内,使得LLM即使在实际任务失败的情况下也能识别这些信号。因此,RESPECT利用这些信号,创造了一条无需额外注释的持续学习之路。
如图1所示,RESPECT通过回顾每轮交互的历史,解码每个动作的反馈信号。模型在与用户交互后,逐步改进其行为,从而实现持续学习。这种方法的最大亮点在于,它不依赖于外部注释,也不需要向用户主动征求反馈,而是通过模型自身的交互积累知识。