知识任务的未来:当缓存增强生成成为新宠

在人工智能的快速发展中,语言模型(Language Models, LMs)已经成为了我们日常生活中不可或缺的一部分。它们不仅能够生成文本,还能回答问题、进行对话,甚至创作文学作品。然而,随着对知识任务的需求日益增加,如何有效地将外部知识整合到这些模型中成为了一个亟待解决的挑战。本文将深入探讨一种新兴的方法——缓存增强生成(Cache-Augmented Generation, CAG),并与传统的检索增强生成(Retrieval-Augmented Generation, RAG)进行对比,揭示CAG在知识任务中的优势。

📚 检索增强生成(RAG)的局限性

RAG是一种将外部知识源动态整合到语言模型中的方法。通过检索相关文档,RAG能够为开放领域的问题提供上下文相关的答案。然而,这种方法并非没有缺陷。首先,实时检索的需求引入了延迟,导致响应速度变慢。其次,文档选择中的潜在错误可能会降低生成响应的质量。此外,检索和生成组件的集成增加了系统的复杂性,使得维护和调优变得更加困难。

例如,在处理复杂的多轮对话或长文本摘要时,RAG系统可能会因为无法准确检索到相关信息而导致生成的答案不够准确或不够连贯。随着大型语言模型(LLMs)在上下文窗口方面的显著扩展,传统的RAG方法在某些应用场景中显得力不从心。

🚀 缓存增强生成(CAG)的崭露头角

鉴于RAG的局限性,研究者们提出了缓存增强生成(CAG)这一新范式。CAG的核心思想是预加载所有相关资源,尤其是在待检索的文档或知识量有限且可管理的情况下,将其直接加载到LLM的扩展上下文中,并缓存其运行时参数。这一方法在推理过程中利用这些预加载的参数回答查询,完全省去了实时检索的步骤。

🔑 CAG的工作流程

CAG的工作流程可以分为三个主要阶段:

  1. 外部知识预加载:在这一阶段,相关文档集合被预处理并格式化,以适应模型的扩展上下文窗口。通过将文档编码为键值缓存(KV cache),模型能够在后续的推理过程中快速访问这些信息。

    C K V = K V − E n c o d e ( D ) CKV = KV-Encode(D) CK

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

步子哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值