🕰️在这个瞬息万变的信息时代,如何有效地回答与时间相关的问题,成为了自然语言处理(NLP)领域中的一大挑战。随着大型语言模型(LLMs)的发展,传统的问答系统面临着新的机遇与挑战。本文将深入探讨一种新提出的模块化检索框架——MRAG(Modular Retrieval for Time-Sensitive Question Answering),并介绍一个新基准数据集——TEMPRAGEVAL,旨在提高时间敏感问答的准确性和效率。
🌍 时间敏感问答的挑战
时间敏感问答的核心在于理解问题中的时间关系,并基于这些关系提供准确的答案。例如,当我们询问“截至2021年5月6日,谁是英国首相?”时,检索系统不仅需要识别出相关的文档,还需要进行深入的时间推理,以确保所提供的信息在特定的时间点上是准确的。随着信息的快速变化,问答系统必须能够适应新的事实,而不仅仅依赖于固定的知识库。
🔄 现有方法的局限性
目前,许多基于LLM的问答系统依赖于参数化知识来直接回答时间敏感的问题。然而,这种方法存在显著的局限性。首先,更新LLM的参数以反映最新的事实是一项资源密集型的任务,往往不切实际。即使在更新后,LLM也可能无法准确反映最新的事实及其相关信息。此外,现有的检索方法通常依赖于关键词匹配或语义匹配,对于需要深入时间推理的问题,表现不佳。
🔍 引入TEMPRAGEVAL基准
为了解决上述问题,研究