在当今人工智能的快速发展中,强化学习(Reinforcement Learning, RL)作为一种重要的学习方法,正在不断推动大型语言模型(LLM)的进步。本文将详细解读 DeepSeek-R1 及其变体 DeepSeek-R1-Zero 的算法实现,特别关注其在无监督学习和强化学习中的具体应用和细节。
🌟 引言:从 SFT 到 RL 的转变
在传统的 LLM 训练中,监督微调(Supervised Fine-Tuning, SFT)是不可或缺的一步。然而,DeepSeek-R1 的提出挑战了这一常规思维,探索了在没有 SFT 的情况下,如何通过纯 RL 训练来提升模型的推理能力。DeepSeek-R1-Zero 作为这一理念的先锋,展示了 RL 在自我进化中的潜力。
🔍 DeepSeek-R1-Zero:纯 RL 训练的探索
1.1 简介
DeepSeek-R1-Zero 的“Zero”意指无需人类数据,模型能够通过自我迭代实现学习。这一过程的核心在于 RL 算法的应用,尤其是在没有 SFT 的情况下,如何有效地进行训练。