深入探讨 DeepSeek-R1:强化学习的全新视角

在当今人工智能的快速发展中,强化学习(Reinforcement Learning, RL)作为一种重要的学习方法,正在不断推动大型语言模型(LLM)的进步。本文将详细解读 DeepSeek-R1 及其变体 DeepSeek-R1-Zero 的算法实现,特别关注其在无监督学习和强化学习中的具体应用和细节。

🌟 引言:从 SFT 到 RL 的转变

在传统的 LLM 训练中,监督微调(Supervised Fine-Tuning, SFT)是不可或缺的一步。然而,DeepSeek-R1 的提出挑战了这一常规思维,探索了在没有 SFT 的情况下,如何通过纯 RL 训练来提升模型的推理能力。DeepSeek-R1-Zero 作为这一理念的先锋,展示了 RL 在自我进化中的潜力。

🔍 DeepSeek-R1-Zero:纯 RL 训练的探索

1.1 简介

DeepSeek-R1-Zero 的“Zero”意指无需人类数据,模型能够通过自我迭代实现学习。这一过程的核心在于 RL 算法的应用,尤其是在没有 SFT 的情况下,如何有效地进行训练。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

步子哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值