最优传输革命:从蒙日问题到AI思维的统一场论

🌌 度量江湖的「一统之梦」:Wasserstein距离的登基之路

1781年的巴黎街头,数学家加斯帕尔·蒙日正在为路易十六设计牛奶运输方案。这位法兰西科学院院士不会想到,他提出的「如何以最小成本运输物资」的问题,将在两个世纪后引发数学界的范式革命。就像达芬奇手稿中的飞行器草图最终催生了现代航空,蒙日问题孕育的最优传输理论,正在重塑从量子物理到深度学习的认知版图。

传统度量方式与Wasserstein距离对比:

度量标准 KL散度 JS散度 Wasserstein距离
对称性 非对称 对称 对称
零值问题 对零测度敏感 存在饱和区 全局连续
几何直观 无明确几何解释 有限几何解释 明确传输成本解释
适用场景 同支撑集分布 分布有重叠时 任意概率分布

这个由

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

步子哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值