在当今的自然语言处理(NLP)领域,大语言模型(LLMs)以其强大的生成能力和语义理解能力引领潮流。然而,随着模型规模的不断扩大,推理过程中的效率问题也日益凸显。本文将深入探讨一项新兴的技术——多标记预测(MTP),并分析其在大语言模型推理中的应用潜力。
🚀 引言:语言模型的演变
近年来,解码器仅的变换器(decoder-only transformers)已成为语言建模的最先进模型,广泛应用于大语言模型的构建。然而,随着模型规模和复杂性的增加,推理过程中的挑战也随之加剧。这些挑战主要源于推理的顺序性和内存带宽的限制,导致推理速度缓慢。
在此背景下,多标记预测(MTP)方法应运而生。MTP通过减少纯自回归的特性,使得模型能够并行生成多个相邻的标记,从而显著提高推理效率。研究表明,MTP可以通过自我推测解码实现推理速度的提升,最高可达3.6倍(Cai et al., 2024)。
🧠 多标记预测的能力:从理论到实践
1. 多标记预测的基本原理
在对多