在人工智能领域,大型语言模型(LLMs)的推理能力如同人类大脑的"慢思考"系统,需要层层递进的逻辑推演。2024年OpenAI推出的o1系列模型,首次展示了长链思维(Long Chain-of-Thoughts)在复杂数学题解中的惊人表现——模型会像人类解题般先规划步骤,再验证中间结果,甚至主动回溯修正错误。这种"慢思考"模式揭开了AI深度推理的新篇章,但一个根本性问题始终悬而未决:这种长链推理能力究竟是特定任务的"条件反射",还是模型内嵌的通用智能?
🌌 思维解码术:表示工程的破壁之旅
传统神经网络如同黑箱,研究者们只能通过输入输出猜测其内部机制。直到表示工程(Representation Engineering)的出现,这个局面才被打破。该技术将模型的隐藏状态视为"思维片段",通过分析这些片段的分布规律,就能像脑科学家解读神经元活动般理解AI的思考过程。