文章目录
四、函数
4.1函数简介
# 比如有如下三行代码,这三行代码是一个完整的功能
# print('Hello')
# print('你好')
# print('再见')
# 定义一个函数
def fn():
print('这是我的第一个函数!')
print('hello')
print('今天天气真不错!')
# 打印fn
print(fn) # <function fn at 0x03D2B618>
print(type(fn)) # <class 'function'>
# 会先调用fn(),然后调用type(fn())
print(type(fn()))
# 这是我的第一个函数!
# hello
# 今天天气真不错!
# <class 'NoneType'>
# 总结:
# fn是函数对象 fn()调用函数
# print是函数对象 print()调用函数
# fn()
# 定义一个函数,可以用来求任意两个数的和
def sum() :
a = 123
b = 456
print(a + b)
sum()
# 定义函数时指定形参
def fn2(a , b) :
# print('a =',a)
# print('b =',b)
print(a,"+",b,"=",a + b)
# 调用函数时,来传递实参
fn2(10,20)
fn2(123,456)
4.2 函数的参数
# 求任意三个数的乘积
def mul(a,b,c):
print(a*b*c)
# 根据不同的用户名显示不同的欢迎信息
def welcome(username):
print('欢迎',username,'光临')
# mul(1,2,3)
# welcome('孙悟空')
# 定义一个函数
# 定义形参时,可以为形参指定默认值
# 指定了默认值以后,如果用户传递了参数则默认值没有任何作用
# 如果用户没有传递,则默认值就会生效
def fn(a = 5 , b = 10 , c = 20):
print('a =',a)
print('b =',b)
print('c =',c)
fn(1 , 2 , 3)
fn(1 , 2)
fn()
# 实参的传递方式
# 位置参数
# 位置参数就是将对应位置的实参复制给对应位置的形参
# 第一个实参赋值给第一个形参,第二个实参赋值给第二个形参 。。。
# fn(1 , 2 , 3)
# 关键字参数
# 关键字参数,可以不按照形参定义的顺序去传递,而直接根据参数名去传递参数
# fn(b=1 , c=2 , a=3)
# print('hello' , end='')
# 位置参数和关键字参数可以混合使用
# 混合使用关键字和位置参数时,必须将位置参数写到前面
# fn(1,c=30)
def fn2(a):
print('a =',a)
# 函数在调用时,解析器不会检查实参的类型
# 实参可以传递任意类型的对象
b = 123
b = True
b = 'hello'
b = None
b = [1,2,3]
# fn2(b)
fn2(fn)
def fn3(a , b):
print(a+b)
# TypeError: unsupported operand type(s) for +: 'int' and 'str'
# fn3(123,"456")
def fn4(a):
# 在函数中对形参进行重新赋值,不会影响其他的变量
# a = 20
# a是一个列表,尝试修改列表中的元素
# 如果形参执行的是一个对象,当我们通过形参去修改对象时
# 会影响到所有指向该对象的变量
a[0] = 30
print('a =',a,id(a))
c = 10
c = [1,2,3]
fn4(c) # a = [30, 2, 3] 3268298348992
fn4(c.copy()) # a = [30, 2, 3] 3268298550400
fn4(c[:]) # a = [30, 2, 3] 3268298550400
print('c =',c,id(c)) # c = [30, 2, 3] 2475300297088
4.3 不定长参数
# 不定长的参数
# 定义一个函数,可以求任意个数字的和
# 不定长参数是一个tuple类型的元素
def sum(*nums):
# 定义一个变量,来保存结果
result = 0
print(type(nums)) # <class 'tuple'>
# 遍历元组,并将元组中的数进行累加
for n in nums :
result += n
print(result)
sum(123,456,789,10,20,30,40)
# 在定义函数时,可以在形参前边加上一个*,这样这个形参将会获取到所有的实参
# 它将会将所有的实参保存到一个元组中
# a,b,*c = (1,2,3,4,5,6)
# *a会接受所有的位置实参,并且会将这些实参统一保存到一个元组中(装包)
def fn(*a):
print("a =",a,type(a)) # a = (1, 2, 3, 4, 5) <class 'tuple'>
fn(1,2,3,4,5)
# 带星号的形参只能有一个
# 带星号的参数,可以和其他参数配合使用
# 第一个参数给a,第二个参数给b,剩下的都保存到c的元组中
def fn2(a,b,*c):
print('a =',a)
print('b =',b)
print('c =',c)
# 可变参数不是必须写在最后,但是注意,带*的参数后的所有参数,必须以关键字参数的形式传递
# 第一个参数给a,剩下的位置参数给b的元组,c必须使用关键字参数
def fn2(a,*b,c):
print('a =',a)
print('b =',b)
print('c =',c)
# 所有的位置参数都给a,b和c必须使用关键字参数
def fn2(*a,b,c):
print('a =',a)
print('b =',b)
print('c =',c)
# 如果在形参的开头直接写一个*,则要求我们的所有的参数必须以关键字参数的形式传递
def fn2(*,a,b,c):
print('a =',a)
print('b =',b)
print('c =',c)
fn2(a=3,b=4,c=5)
# *形参只能接收位置参数,而不能接收关键字参数
def fn3(*a) :
print('a =',a)
# **形参可以接收其他的关键字参数,它会将这些参数统一保存到一个字典中
# 字典的key就是参数的名字,字典的value就是参数的值
# **形参只能有一个,并且必须写在所有参数的最后
def fn3(b,c,**a) :
print('a =',a,type(a)) # a = {'d': 2, 'e': 10, 'f': 20} <class 'dict'>
print('b =',b)
print('c =',c)
fn3(b=1,d=2,c=3,e=10,f=20)
# 参数的解包(拆包)
def fn4(a,b,c):
print('a =',a)
print('b =',b)
print('c =',c)
# 创建一个元组
t = (10,20,30)
# 传递实参时,也可以在序列类型的参数前添加星号,这样他会自动将序列中的元素依次作为参数传递
# 这里要求序列中元素的个数必须和形参的个数的一致
fn4(*t)
# 创建一个字典
d = {'a':100,'b':200,'c':300}
# 通过 **来对一个字典进行解包操作
fn4(**d)
4.4 函数值
# 返回值,返回值就是函数执行以后返回的结果
# 可以通过 return 来指定函数的返回值
# 可以之间使用函数的返回值,也可以通过一个变量来接收函数的返回值
def sum(*nums):
# 定义一个变量,来保存结果
result = 0
# 遍历元组,并将元组中的数进行累加
for n in nums :
result += n
print(result)
sum(123,456,789)
# return 后边跟什么值,函数就会返回什么值
# return 后边可以跟任意的对象,返回值甚至可以是一个函数
def fn():
# return 'Hello'
# return [1,2,3]
# return {'k':'v'}
def fn2() :
print('hello')
return fn2 # 返回值也可以是一个函数
r = fn() # 这个函数的执行结果就是它的返回值
r() # 调用返回值是函数的变量
print(fn()) # <function fn.<locals>.fn2 at 0x000001C8831FEAF0>
print(r) # <function fn.<locals>.fn2 at 0x000001C8831FE430>
print(r()) # hello None
# 如果仅仅写一个return 或者 不写return,则相当于return None
def fn2() :
a = 10
return
# 在函数中,return后的代码都不会执行,return 一旦执行函数自动结束
def fn3():
print('hello')
return
print('abc')
# r = fn3()
# print(r)
def fn4() :
for i in range(5):
if i == 3 :
# break 用来退出当前循环
# continue 用来跳过当次循环
return # return 用来结束函数
print(i)
print('循环执行完毕!')
# fn4()
def sum(*nums):
# 定义一个变量,来保存结果
result = 0
# 遍历元组,并将元组中的数进行累加
for n in nums :
result += n
return result
r = sum(123,456,789)
# print(r + 778)
def fn5():
return 10
# fn5 和 fn5()的区别
print(fn5) # fn5是函数对象,打印fn5实际是在打印函数对象 <function fn5 at 0x05771BB8>
print(fn5()) # fn5()是在调用函数,打印fn5()实际上是在打印fn5()函数的返回值 10
4.5 文档字符串
# help()是Python中的内置函数
# 通过help()函数可以查询python中的函数的用法
# 语法:help(函数对象)
# help(print) # 获取print()函数的使用说明
# 文档字符串(doc str)
# 在定义函数时,可以在函数内部编写文档字符串,文档字符串就是函数的说明
# 当我们编写了文档字符串时,就可以通过help()函数来查看函数的说明
# 文档字符串非常简单,其实直接在函数的第一行写一个字符串就是文档字符串
def fn(a:int,b:bool,c:str='hello') -> int:
'''
这是一个文档字符串的示例
函数的作用:。。。。。
函数的参数:
a,作用,类型,默认值。。。。
b,作用,类型,默认值。。。。
c,作用,类型,默认值。。。。
'''
return 10
help(fn)
4.6 作用域与命名空间
# 作用域(scope)
# 作用域指的是变量生效的区域
b = 20 # 全局变量
def fn():
a = 10 # a定义在了函数内部,所以他的作用域就是函数内部,函数外部无法访问
print('函数内部:','a =',a)
print('函数内部:','b =',b)
# fn()
# print('函数外部:','a =',a)
# print('函数外部:','b =',b)
# 在Python中一共有两种作用域
# 全局作用域
# - 全局作用域在程序执行时创建,在程序执行结束时销毁
# - 所有函数以外的区域都是全局作用域
# - 在全局作用域中定义的变量,都属于全局变量,全局变量可以在程序的任意位置被访问
#
# 函数作用域
# - 函数作用域在函数调用时创建,在调用结束时销毁
# - 函数每调用一次就会产生一个新的函数作用域
# - 在函数作用域中定义的变量,都是局部变量,它只能在函数内部被访问
#
# 变量的查找
# - 当我们使用变量时,会优先在当前作用域中寻找该变量,如果有则使用,
# 如果没有则继续去上一级作用域中寻找,如果有则使用,
# 如果依然没有则继续去上一级作用域中寻找,以此类推
# 直到找到全局作用域,依然没有找到,则会抛出异常
# NameError: name 'a' is not defined
def fn2():
def fn3():
print('fn3中:','a =',a)
fn3()
# fn2()
a = 20
def fn3():
# a = 10 # 在函数中为变量赋值时,默认都是为局部变量赋值
# 如果希望在函数内部修改全局变量,则需要使用global关键字,来声明变量
global a # 声明在函数内部的使用a是全局变量,此时再去修改a时,就是在修改全局的a
a = 10 # 修改全局变量
print('函数内部:','a =',a)
fn3()
# 使用 global 关键字修改了函数外部变量的值
print('函数外部:','a =',a) # 函数外部: a = 10
# 命名空间(namespace)
# 命名空间指的是变量存储的位置,每一个变量都需要存储到指定的命名空间当中
# 每一个作用域都会有一个它对应的命名空间
# 全局命名空间,用来保存全局变量。函数命名空间用来保存函数中的变量
# 命名空间实际上就是一个字典,是一个专门用来存储变量的字典
# locals()用来获取当前作用域的命名空间
# 如果在全局作用域中调用locals()则获取全局命名空间,如果在函数作用域中调用locals()则获取函数命名空间
# 返回的是一个字典
scope = locals() # 当前命名空间
print(type(scope)) # <class 'dict'>
print(a) # 10
print(scope['a']) # 10
# 向scope中添加一个key-value
# scope['c'] = 1000 # 向字典中添加key-value就相当于在全局中创建了一个变量(一般不建议这么做)
# print(c)
def fn4():
a = 40
scope = locals() # 在函数内部调用locals()会获取到函数的命名空间
print('scope = ',scope) # scope = {'a': 40}
# scope['b'] = 20 # 可以通过scope来操作函数的命名空间,但是也是不建议这么做
# globals() 函数可以用来在任意位置获取全局命名空间
global_scope = globals()
print('globals = ', global_scope) # globals = {'__name__': '__main__', '__doc__': None, '__package__': None, '__loader__': <_frozen_importlib_external.SourceFileLoader object at 0x0000021021E46CD0>, '__spec__': None, '__annotations__': {}, '__builtins__': <module 'builtins' (built-in)>, '__file__': 'C:\\学习资料\\Python-代码-笔记\\lesson_05_函数\\code\\06.作用域与命名空间.py', '__cached__': None, 'b': 20, 'fn': <function fn at 0x000002102232EAF0>, 'fn2': <function fn2 at 0x000002102232E4C0>, 'a': 10, 'fn3': <function fn3 at 0x0000021022564430>, 'scope': {...}, 'fn4': <function fn4 at 0x0000021022564550>}
print("global_scope['a'] = ", global_scope['a']) # global_scope['a'] = 10
global_scope['a'] = 30
print(scope) # {'a': 40}
fn4()
4.7 递归
# 尝试求10的阶乘(10!)
# 1! = 1
# 2! = 1*2 = 2
# 3! = 1*2*3 = 6
# 4! = 1*2*3*4 = 24
# print(1*2*3*4*5*6*7*8*9*10)
# 创建一个变量保存结果
# n = 10
# for i in range(1,10):
# n *= i
# print(n)
# 创建一个函数,可以用来求任意数的阶乘
def factorial(n):
'''
该函数用来求任意数的阶乘
参数:
n 要求阶乘的数字
'''
# 创建一个变量,来保存结果
result = n
for i in range(1,n):
result *= i
return result
# 求10的阶乘
# print(factorial(20))
# 递归式的函数
# 从前有座山,山里有座庙,庙里有个老和尚讲故事,讲的什么故事呢?
# 从前有座山,山里有座庙,庙里有个老和尚讲故事,讲的什么故事呢?....
# 递归简单理解就是自己去引用自己!
# 递归式函数,在函数中自己调用自己!
# 无穷递归,如果这个函数被调用,程序的内存会溢出,效果类似于死循环
# def fn():
# fn()
# fn()
# 递归是解决问题的一种方式,它和循环很像
# 它的整体思想是,将一个大问题分解为一个个的小问题,直到问题无法分解时,再去解决问题
# 递归式函数的两个要件
# 1.基线条件
# - 问题可以被分解为的最小问题,当满足基线条件时,递归就不在执行了
# 2.递归条件
# - 将问题继续分解的条件
# 递归和循环类似,基本是可以互相代替的,
# 循环编写起来比较容易,阅读起来稍难
# 递归编写起来难,但是方便阅读
# 10! = 10 * 9!
# 9! = 9 * 8!
# 8! = 8 * 7!
# ...
# 1! = 1
def factorial(n):
'''
该函数用来求任意数的阶乘
参数:
n 要求阶乘的数字
'''
# 基线条件 判断n是否为1,如果为1则此时不能再继续递归
if n == 1 :
# 1的阶乘就是1,直接返回1
return 1
# 递归条件
return n * factorial(n-1)
# print(factorial(10))
# 练习
# 创建一个函数 power 来为任意数字做幂运算 n ** i
# 10 ** 5 = 10 * 10 ** 4
# 10 ** 4 = 10 * 10 ** 3
# ...
# 10 ** 1 = 10
def power(n , i):
'''
power()用来为任意的数字做幂运算
参数:
n 要做幂运算的数字
i 做幂运算的次数
'''
# 基线条件
if i == 1:
# 求1次幂
return n
# 递归条件
return n * power(n , i-1)
# print(power(8,6))
#
# 练习
# 创建一个函数,用来检查一个任意的字符串是否是回文字符串,如果是返回True,否则返回False
# 回文字符串,字符串从前往后念和从后往前念是一样的
# abcba
# abcdefgfedcba
# 先检查第一个字符和最后一个字符是否一致,如果不一致则不是回文字符串
# 如果一致,则看剩余的部分是否是回文字符串
# 检查 abcdefgfedcba 是不是回文
# 检查 bcdefgfedcb 是不是回文
# 检查 cdefgfedc 是不是回文
# 检查 defgfed 是不是回文
# 检查 efgfe 是不是回文
# 检查 fgf 是不是回文
# 检查 g 是不是回文
def hui_wen(s):
'''
该函数用来检查指定的字符串是否回文字符串,如果是返回True,否则返回False
参数:
s:就是要检查的字符串
'''
# 基线条件
if len(s) < 2 :
# 字符串的长度小于2,则字符串一定是回文
return True
elif s[0] != s[-1]:
# 第一个字符和最后一个字符不相等,不是回文字符串
return False
# 递归条件
return hui_wen(s[1:-1])
# def hui_wen(s):
# '''
# 该函数用来检查指定的字符串是否回文字符串,如果是返回True,否则返回False
# 参数:
# s:就是要检查的字符串
# '''
# # 基线条件
# if len(s) < 2 :
# # 字符串的长度小于2,则字符串一定是回文
# return True
# # 递归条件
# return s[0] == s[-1] and hui_wen(s[1:-1])
print(hui_wen('abcdefgfedcba'))
4.8 高阶函数、filter、map、lambda表达式、sort和sorted的区别
# 高阶函数
# 接收函数作为参数,或者将函数作为返回值的函数是高阶函数
# 当我们使用一个函数作为参数时,实际上是将指定的代码传递进了目标函数
# 创建一个列表
l = [1,2,3,4,5,6,7,8,9,10]
# 定义一个函数
# 可以将指定列表中的所有的偶数,保存到一个新的列表中返回
# 定义一个函数,用来检查一个任意的数字是否是偶数
def fn2(i) :
if i % 2 == 0 :
return True
return False
# 这个函数用来检查指定的数字是否大于5
def fn3(i):
if i > 5 :
return True
return False
def fn(func , lst) :
'''
fn()函数可以将指定列表中的所有偶数获取出来,并保存到一个新列表中返回
参数:
lst:要进行筛选的列表
'''
# 创建一个新列表
new_list = []
# 对列表进行筛选
for n in lst :
# 判断n的奇偶
if func(n) :
new_list.append(n)
# if n > 5 :
# new_list.append(n)
# 返回新列表
return new_list
# def fn4(i):
# if i % 3 == 0:
# return True
# return False
def fn4(i):
return i % 3 == 0
print(fn(fn4 , l))
# filter()
# filter()可以从序列中过滤出符合条件的元素,保存到一个新的序列中
# 参数:
# 1.函数,根据该函数来过滤序列(可迭代的结构)
# 2.需要过滤的序列(可迭代的结构)
# 返回值:
# 过滤后的新序列(可迭代的结构)
# fn4是作为参数传递进filter()函数中
# 而fn4实际上只有一个作用,就是作为filter()的参数
# filter()调用完毕以后,fn4就已经没用
# 匿名函数 lambda 函数表达式 (语法糖)
# lambda函数表达式专门用来创建一些简单的函数,他是函数创建的又一种方式
# 语法:lambda 参数列表 : 返回值
# 匿名函数一般都是作为参数使用,其他地方一般不会使用
def fn5(a , b):
return a + b
# (lambda a,b : a + b)(10,20)
# 也可以将匿名函数赋值给一个变量,一般不会这么做
fn6 = lambda a,b : a + b
# print(fn6(10,30))
r = filter(lambda i : i > 5 , l)
# print(list(r))
# map()
# map()函数可以对可跌倒对象中的所有元素做指定的操作,然后将其添加到一个新的对象中返回
l = [1,2,3,4,5,6,7,8,9,10]
r = map(lambda i : i ** 2 , l)
# print(list(r))
# sort()
# 该方法用来对列表中的元素进行排序
# sort()方法默认是直接比较列表中的元素的大小
# 在sort()可以接收一个关键字参数 , key
# key需要一个函数作为参数,当设置了函数作为参数
# 每次都会以列表中的一个元素作为参数来调用函数,并且使用函数的返回值来比较元素的大小
l = ['bb','aaaa','c','ddddddddd','fff']
# 按照长度进行排序,默认是升序
l.sort(key=len) # ['c', 'bb', 'fff', 'aaaa', 'ddddddddd']
print(l)
l = [2,5,'1',3,'6','4']
l.sort(key=int) # ['1', 2, 3, '4', 5, '6']
print(l)
# sorted()
# 这个函数和sort()的用法基本一致,但是sorted()可以对任意的序列进行排序
# 并且使用sorted()排序不会影响原来的对象,而是返回一个新对象
l = [2,5,'1',3,'6','4']
# l = "123765816742634781"
print('排序前:',l)
print(sorted(l,key=int))
print('排序后:',l)
4.9 闭包
# 将函数作为返回值返回,也是一种高阶函数
# 这种高阶函数我们也称为叫做闭包,通过闭包可以创建一些只有当前函数能访问的变量
# 可以将一些私有的数据藏到的闭包中
def fn():
a = 10
# 函数内部再定义一个函数
def inner():
print('我是fn2' , a)
# 将内部函数 inner作为返回值返回
return inner
# r是一个函数,是调用fn()后返回的函数
# 这个函数是在fn()内部定义,并不是全局函数
# 所以这个函数总是能访问到fn()函数内的变量
r = fn()
# r()
# 求多个数的平均值
# nums = [50,30,20,10,77]
# sum()用来求一个列表中所有元素的和
# print(sum(nums)/len(nums))
# 形成闭包的要件
# ① 函数嵌套
# ② 将内部函数作为返回值返回
# ③ 内部函数必须要使用到外部函数的变量
def make_averager():
# 创建一个列表,用来保存数值
nums = []
# 创建一个函数,用来计算平均值
def averager(n) :
# 将n添加到列表中
nums.append(n)
# 求平均值
return sum(nums)/len(nums)
return averager
averager = make_averager()
print(averager(10))
print(averager(20))
print(averager(30))
print(averager(40))
4.10 修饰器
# 创建几个函数
def add(a , b):
'''
求任意两个数的和
'''
r = a + b
return r
def mul(a , b):
'''
求任意两个数的积
'''
r = a * b
return r
# 希望函数可以在计算前,打印开始计算,计算结束后打印计算完毕
# 我们可以直接通过修改函数中的代码来完成这个需求,但是会产生以下一些问题
# ① 如果要修改的函数过多,修改起来会比较麻烦
# ② 并且不方便后期的维护
# ③ 并且这样做会违反开闭原则(OCP)
# 程序的设计,要求开发对程序的扩展,要关闭对程序的修改
# r = add(123,456)
# print(r)
# 我们希望在不修改原函数的情况下,来对函数进行扩展
def fn():
print('我是fn函数....')
# 只需要根据现有的函数,来创建一个新的函数
def fn2():
print('函数开始执行~~~')
fn()
print('函数执行结束~~~')
# fn2()
def new_add(a,b):
print('计算开始~~~')
r = add(a,b)
print('计算结束~~~')
return r
# r = new_add(111,222)
# print(r)
# 上边的方式,已经可以在不修改源代码的情况下对函数进行扩展了
# 但是,这种方式要求我们每扩展一个函数就要手动创建一个新的函数,实在是太麻烦了
# 为了解决这个问题,我们创建一个函数,让这个函数可以自动的帮助我们生产函数
def begin_end(old):
'''
用来对其他函数进行扩展,使其他函数可以在执行前打印开始执行,执行后打印执行结束
参数:
old 要扩展的函数对象
'''
# 创建一个新函数
def new_function(*args , **kwargs):
print('开始执行~~~~')
# 调用被扩展的函数
result = old(*args , **kwargs)
print('执行结束~~~~')
# 返回函数的执行结果
return result
# 返回新函数
return new_function
f = begin_end(fn)
f2 = begin_end(add)
f3 = begin_end(mul)
# r = f()
# r = f2(123,456)
# r = f3(123,456)
# print(r)
# 向begin_end()这种函数我们就称它为装饰器
# 通过装饰器,可以在不修改原来函数的情况下来对函数进行扩展
# 在开发中,我们都是通过装饰器来扩展函数的功能的
# 在定义函数时,可以通过@装饰器,来使用指定的装饰器,来装饰当前的函数
# 可以同时为一个函数指定多个装饰器,这样函数将会安装从内向外的顺序被装饰
def fn3(old):
'''
用来对其他函数进行扩展,使其他函数可以在执行前打印开始执行,执行后打印执行结束
参数:
old 要扩展的函数对象
'''
# 创建一个新函数
def new_function(*args , **kwargs):
print('fn3装饰~开始执行~~~~')
# 调用被扩展的函数
result = old(*args , **kwargs)
print('fn3装饰~执行结束~~~~')
# 返回函数的执行结果
return result
# 返回新函数
return new_function
print('-' * 20)
@fn3
@begin_end
def say_hello():
print('大家好~~~')
say_hello()
# 打印结果如下:
'''
--------------------
fn3装饰~开始执行~~~~
开始执行~~~~
大家好~~~
执行结束~~~~
fn3装饰~执行结束~~~~
'''
4.11 总结
## 函数简介(function)
- 函数也是一个对象
- 对象是内存中专门用来存储数据的一块区域
- 函数可以用来保存一些可执行的代码,并且可以在需要时,对这些语句进行多次的调用
- 创建函数:
def 函数名([形参1,形参2,...形参n]) :
代码块
- 函数名必须要符号标识符的规范
(可以包含字母、数字、下划线、但是不能以数字开头)
- 函数中保存的代码不会立即执行,需要调用函数代码才会执行
- 调用函数:
函数对象()
- 定义函数一般都是要实现某种功能的
## 函数的参数
- 在定义函数时,可以在函数名后的()中定义数量不等的形参,
多个形参之间使用,隔开
- 形参(形式参数),定义形参就相当于在函数内部声明了变量,但是并不赋值
- 实参(实际参数)
- 如果函数定义时,指定了形参,那么在调用函数时也必须传递实参,
实参将会赋值给对应的形参,简单来说,有几个形参就得传几个实参
- 练习1:
定义一个函数,可以用来求任意三个数的乘积
- 练习2:
定义一个函数,可以根据不同的用户名显示不同的欢迎信息
## 函数式编程
- 在Python中,函数是一等对象
- 一等对象一般都会具有如下特点:
① 对象是在运行时创建的
② 能赋值给变量或作为数据结构中的元素
③ 能作为参数传递
④ 能作为返回值返回
- 高阶函数
- 高阶函数至少要符合以下两个特点中的一个
① 接收一个或多个函数作为参数
② 将函数作为返回值返回
- 装饰器