今天距离2023年12月23日 还有216天,30周6天
——————————————————————
数一进度 高数 基础 进度到向量曲面积分,剩余 近两章内容。
线性代数 未进行
概率论 未进行
专业课 数据结构 王道第二章开头
C/C++ 自购目标院校材料,翻看到1/2;
英语 3300核心词汇 2859(每日 210老词汇,70新词汇)
阅读未进行
政治 未进行
_______________________________________
今日 英语 210词汇加70新词;
数学 向量部分(中学知识模糊了,稍微吃力些,视频资料较少,不好学习)
以下为今天数学学习内容
向量代数与空间解析几何 第四节 空间直线及其方程 - 知乎 (zhihu.com)
第八章 向量代数与空间解析几何——第四讲(空间直线) - 知乎 (zhihu.com)
下方截图完全摘自上方链接,可直接点链接看
—————————————————————
点到直线的距离 已知直线的标准式 Ax+By+C=0;和一点
两平行平面的距离
一 空间直线的方程(一般方程、两点式方程、点式方程、参数方程)
1. 一般方程
2. 两点式方程
3.点式方程
(对于 m或者n=0时,个人理解为向量在zy或者xz的平面上,而当两个分母为0时,则说明向量和不为0的方向平行。如果三个都为零,说明是个0向量。 )(本文为个人记录总结梳理,其中可能有错误的部分)
4. 参数方程
对于例1中 为什么向量S=n1Xn2,S为n1和n2构成面的叉乘。 首先单从叉乘的角度看,n1和n2的叉乘的垂直于n1,n2.而S是所有满足该条件向量的集合,所以可以将S当做n1,n2的叉乘。
二、直线与直线的夹角
(得出两个直线的方向向量,套入公式得夹角)
(今天这个结论的证明部分没看懂 2023-5-21)
三、直线与平面的夹角
四、平面束方程(过一条直线的平面的表达式)
例6大致是通了,但是不算熟悉,明天再过一次
(一般方程和对称式方程的互相转换)
(一般化对称 思路是 上下两个等式消掉y,用x表示z,然后将x换成z带入任意式,用y表示z,这样就得到了一个z=含x的式子=含y的式子 这就是 对称式)
(对称化一般 思路和上面的相反。 选含z的项分别和另外两个含x,y的项组成等式。这就得到了 一般式)