2023 研究生考试 倒计时

 今天距离2023年12月23日 还有216天,30周6天

——————————————————————

数一进度  高数 基础 进度到向量曲面积分,剩余 近两章内容。

                 线性代数  未进行

                 概率论      未进行

专业课      数据结构 王道第二章开头

                 C/C++     自购目标院校材料,翻看到1/2;

英语         3300核心词汇  2859(每日 210老词汇,70新词汇)

                 阅读未进行

政治         未进行

_______________________________________

今日   英语 210词汇加70新词;

          数学  向量部分(中学知识模糊了,稍微吃力些,视频资料较少,不好学习)

以下为今天数学学习内容

向量代数与空间解析几何 第四节 空间直线及其方程 - 知乎 (zhihu.com)

第八章 向量代数与空间解析几何——第四讲(空间直线) - 知乎 (zhihu.com)

下方截图完全摘自上方链接,可直接点链接看

 —————————————————————

             点到直线的距离 已知直线的标准式 Ax+By+C=0;和一点

              点到面的距离

           两平行平面的距离

         空间直线和方程

       一  空间直线的方程(一般方程、两点式方程、点式方程、参数方程)

1. 一般方程

 2. 两点式方程

 3.点式方程

 (对于 m或者n=0时,个人理解为向量在zy或者xz的平面上,而当两个分母为0时,则说明向量和不为0的方向平行。如果三个都为零,说明是个0向量。 )(本文为个人记录总结梳理,其中可能有错误的部分)

4. 参数方程

 

对于例1中 为什么向量S=n1Xn2,S为n1和n2构成面的叉乘。 首先单从叉乘的角度看,n1和n2的叉乘的垂直于n1,n2.而S是所有满足该条件向量的集合,所以可以将S当做n1,n2的叉乘。

二、直线与直线的夹角

(得出两个直线的方向向量,套入公式得夹角)

 (今天这个结论的证明部分没看懂 2023-5-21)

三、直线与平面的夹角

 

四、平面束方程(过一条直线的平面的表达式)

例6大致是通了,但是不算熟悉,明天再过一次

 (一般方程和对称式方程的互相转换)

 高数下册 三种直线的转化_哔哩哔哩_bilibili

 (一般化对称 思路是 上下两个等式消掉y,用x表示z,然后将x换成z带入任意式,用y表示z,这样就得到了一个z=含x的式子=含y的式子 这就是 对称式)

(对称化一般  思路和上面的相反。 选含z的项分别和另外两个含x,y的项组成等式。这就得到了 一般式)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值