系统学习机器学习方法
系统学习机器学习方法
Jack_Kuo
https://github.com/JackKuo666
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【机器学习】:3、分类:SVM
#本段代码使用sklearn包下的SVM函数进行二分类问题(线性和非线性分类)的解决import numpy as npimport pandas as pdfrom pandas import DataFramefrom sklearn import datasetsfrom sklearn.preprocessing import StandardScalerfrom sklearn.model_selection import train_test_splitfrom sklearn.s原创 2021-08-29 09:58:28 · 340 阅读 · 0 评论 -
【机器学习】:2、聚类:kmeans
from sklearn import cluster,datasetsimport numpy as npimport pandas as pdiris = datasets.load_iris()X = iris.datay = iris.targetkm = cluster.KMeans(n_clusters=3)print(X.shape)print(X[:10])print(y.shape)print(y)km.fit(X)k_y = km.predict(X)#原创 2021-08-26 08:23:48 · 108 阅读 · 0 评论 -
【机器学习】:1、特征工程:数据归一化
数据预处理方法scikit-learn模块降维模块 Dimensionality reduction (decomposition)数据预处理模块 Preprocessing填补缺失值 impute特征选择 feature_selection数据无量纲化数据归一化 normalization(preprocessing.MinMaxScaler)通过 中心化(平移)缩放处理 ,MinMaxScaler参数 feature_range 默认参数[0,1],使得数据收敛到(0,1)极易受异原创 2021-08-25 09:37:07 · 232 阅读 · 0 评论 -
NB:朴素贝叶斯分类(Naive Bayesian)
朴素贝叶斯算法 & 应用实例:https://www.cnblogs.com/marc01in/p/4775440.html原创 2019-01-01 21:32:34 · 457 阅读 · 0 评论 -
PCA:主成分分析(Principal components analysis)
1.PCA原理:http://www.cnblogs.com/pinard/p/6239403.html2.PCA代码:https://www.cnblogs.com/pinard/p/6243025.html原创 2019-01-01 21:08:41 · 388 阅读 · 0 评论 -
LDA:线性判别分析(Linear Discriminant Analysis)
http://www.cnblogs.com/pinard/p/6244265.html原创 2019-01-01 21:02:41 · 424 阅读 · 0 评论 -
【吴恩达机器学习笔记】week5:神经网络的学习
待补充原创 2018-12-30 13:54:01 · 463 阅读 · 0 评论 -
【吴恩达机器学习笔记】week4:神经网络
本节内容主要讲了以下几件事儿1.为什么神经网络好?线性回归还是逻辑回归都有这样一个缺点,即:当特征太多时,计算的负荷会非常大。2.我们需要知道的:公式每个字符代表的含义以及公式怎么推导的神经网络模型是许多逻辑单元按照不同层级组织起来的网络,每一层的输出变量都是下一层的输入变量。下图为一个3层的神经网络,第一层成为输入层(Input Layer),最后一层称为输出层(Output Layer...原创 2018-12-28 16:34:56 · 358 阅读 · 1 评论 -
【吴恩达机器学习笔记】week3:2/2正则化
七、正则化(Regularization)7.1 过拟合的问题 本节主要介绍1.什么是过拟合?2.训练的模型出现过拟合之后该怎么办?如果我们有非常多的特征,我们通过学习得到的假设可能能够非常好地适应训练集(代价函数可能几乎为0),但是可能会不能推广到新的数据。下图是一个回归问题的例子:第一个模型是一个线性模型,欠拟合,不能很好地适应我们的训练集;第三个模型是一个四次方的模型,过于强调拟...原创 2018-12-28 15:18:53 · 235 阅读 · 0 评论 -
【吴恩达机器学习笔记】week3:1/2逻辑回归
第三周六、逻辑回归(Logistic Regression)这里首先区分一下线性回归和逻辑回归,线性回归就是拟合,逻辑回归是分类。6.2 假说表式(Hypothesis Representation)下面一个部分主要讲的是假设函数h(x)在分类问题中输出只能是0/1,所以需要引入新的函数表示,也即是逻辑函数。6.3 判定边界【我的理解:下边讲的其实就是逻辑回归的假设函数(Hypot...原创 2018-12-28 12:27:01 · 298 阅读 · 0 评论 -
【吴恩达机器学习笔记】week2:多变量线性回归
第二周四、多变量线性回归(Linear Regression with Multiple Variables)4.1 多维特征4.2 多变量梯度下降4.3 梯度下降法实践1-特征缩放以房价问题为例,假设我们使用两个特征,房屋的尺寸和房间的数量,尺寸的值为 0-2000平方英尺,而房间数量的值则是0-5,以两个参数分别为横纵坐标,绘制代价函数的等高线图能,看出图像会显得很扁,梯度下...原创 2018-12-28 15:48:52 · 430 阅读 · 0 评论 -
【吴恩达机器学习笔记】week1:单变量线性回归
第一周一、 引言(Introduction)1. 机器学习是什么?术语的定义:1.机器学习:一个程序被认为能从经验E中学习,解决任务T,达到性能度量值P,当且仅当,有了经验E后,经过P评判,程序在处理T时的性能有所提升。我认为经验E 就是程序上万次的自我练习的经验而任务T 就是下棋。性能度量值P呢,就是它在与一些新的对手比赛时,赢得比赛的概率。2.监督学习:我们给学习算法一个数据集。...原创 2018-12-28 15:45:48 · 317 阅读 · 0 评论 -
【系统学习机器学习方法】:详解KDTree
详解KDTreehttps://blog.csdn.net/silangquan/article/details/41483689原创 2018-11-18 21:43:46 · 500 阅读 · 0 评论 -
SVM
SVM1. 基本概念支持向量机(Support Vector Machine, SVM)的基本模型是在特征空间上找到最佳的分离超平面使得训练集上正负样本间隔最大。SVM是用来解决二分类问题的有监督学习算法,在引入了核方法之后SVM也可以用来解决非线性问题。 一般SVM有下面三种:硬间隔支持向量机(线性可分支持向量机):当训练数据线性可分时,可通过硬间隔最大化学得一个线性可分支...原创 2018-03-05 22:51:51 · 97423 阅读 · 5 评论