1 题目:滑动窗口中位数
官方标定难度:难
中位数是有序序列最中间的那个数。如果序列的长度是偶数,则没有最中间的数;此时中位数是最中间的两个数的平均数。
例如:
[2,3,4],中位数是 3
[2,3],中位数是 (2 + 3) / 2 = 2.5
给你一个数组 nums,有一个长度为 k 的窗口从最左端滑动到最右端。窗口中有 k 个数,每次窗口向右移动 1 位。你的任务是找出每次窗口移动后得到的新窗口中元素的中位数,并输出由它们组成的数组。
示例:
给出 nums = [1,3,-1,-3,5,3,6,7],以及 k = 3。
窗口位置 中位数
[1 3 -1] -3 5 3 6 7 1
1 [3 -1 -3] 5 3 6 7 -1
1 3 [-1 -3 5] 3 6 7 -1
1 3 -1 [-3 5 3] 6 7 3
1 3 -1 -3 [5 3 6] 7 5
1 3 -1 -3 5 [3 6 7] 6
因此,返回该滑动窗口的中位数数组 [1,-1,-1,3,5,6]。
提示:
你可以假设 k 始终有效,即:k 始终小于等于输入的非空数组的元素个数。
与真实值误差在 10 ^ -5 以内的答案将被视作正确答案。
2 solution
这是求数据流中位数的进阶版,因为需要加入数据的同时还需要删除数据,这对于堆来说是困难的,因为堆只能处理堆顶的元素,所以明智的做法是延迟操作,即先标记删除,当堆顶的元素是需要删除的数就删除,否则它也不影响求中位数。
代码
class Solution {
public:
vector<double> medianSlidingWindow(vector<int> &nums, int k) {
priority_queue<int> low; //
priority_queue<int, vector<int>, greater<>> high; //
unordered_map<int, int> deleted;
int low_size = 0, high_size = 0;
low.push(INT32_MIN);
high.push(INT32_MAX);
vector<double> mediums;
for (int i = 0; i < nums.size(); i++) {
if (nums[i] <= low.top()) { // 加入low
low.push(nums[i]);
low_size++;
if (low_size > high_size + 1) { // low_size >= high_size
high.push(low.top());
low.pop();
low_size--, high_size++;
}
} else {
high.push(nums[i]);
high_size++;
if (high_size > low_size) { // low_size >= high_size
low.push(high.top());
high.pop();
low_size++, high_size--;
}
}
if (i >= k - 1) {
// 被删除的数不参与计算中位数、不参与size统计
while (deleted[low.top()]){
deleted[low.top()]--;
low.pop();
}
while (deleted[high.top()]){
deleted[high.top()]--;
high.pop();
}
if (k % 2 == 0) mediums.push_back(low.top() / 2.0 + high.top() / 2.0);
else mediums.push_back(low.top());
deleted[nums[i - k + 1]]++;
if (nums[i - k + 1] <= low.top()) low_size--;
else high_size--;
}
}
return mediums;
}
};