1 题目:射箭比赛中的最大得分
官方标定难度:中
Alice 和 Bob 是一场射箭比赛中的对手。比赛规则如下:
Alice 先射 numArrows 支箭,然后 Bob 也射 numArrows 支箭。
分数按下述规则计算:
箭靶有若干整数计分区域,范围从 0 到 11 (含 0 和 11)。
箭靶上每个区域都对应一个得分 k(范围是 0 到 11),Alice 和 Bob 分别在得分 k 区域射中 ak 和 bk 支箭。如果
a
k
>
=
b
k
a_k >= b_k
ak>=bk ,那么 Alice 得 k 分。如果 ak < bk ,则 Bob 得 k 分
如果
a
k
=
=
b
k
=
=
0
a_k == b_k==0
ak==bk==0 ,那么无人得到 k 分。
例如,Alice 和 Bob 都向计分为 11 的区域射 2 支箭,那么 Alice 得 11 分。如果 Alice 向计分为 11 的区域射 0 支箭,但 Bob 向同一个区域射 2 支箭,那么 Bob 得 11 分。
给你整数 numArrows 和一个长度为 12 的整数数组 aliceArrows ,该数组表示 Alice 射中 0 到 11 每个计分区域的箭数量。现在,Bob 想要尽可能 最大化 他所能获得的总分。
返回数组 bobArrows ,该数组表示 Bob 射中 0 到 11 每个 计分区域的箭数量。且 bobArrows 的总和应当等于 numArrows 。
如果存在多种方法都可以使 Bob 获得最大总分,返回其中 任意一种 即可。
示例 1:
输入:numArrows = 9, aliceArrows = [1,1,0,1,0,0,2,1,0,1,2,0]
输出:[0,0,0,0,1,1,0,0,1,2,3,1]
解释:上表显示了比赛得分情况。
Bob 获得总分 4 + 5 + 8 + 9 + 10 + 11 = 47 。
可以证明 Bob 无法获得比 47 更高的分数。
示例 2:
输入:numArrows = 3, aliceArrows = [0,0,1,0,0,0,0,0,0,0,0,2]
输出:[0,0,0,0,0,0,0,0,1,1,1,0]
解释:上表显示了比赛得分情况。
Bob 获得总分 8 + 9 + 10 = 27 。
可以证明 Bob 无法获得比 27 更高的分数。
提示:
1
<
=
n
u
m
A
r
r
o
w
s
<
=
1
0
5
1 <= numArrows <= 10^5
1<=numArrows<=105
aliceArrows.length == bobArrows.length == 12
0 <= aliceArrows[i], bobArrows[i] <= numArrows
sum(aliceArrows[i]) == numArrows
2 solution
用枚举法,验证所有可能的情况,记录最大值。用格雷码遍历,可以降低统计成本
代码
class Solution {
public:
vector<int> maximumBobPoints(int numArrows, vector<int> &aliceArrows) {
vector<int> ans(12);
int Max = 0, sum = 0, m = 1 << 12, score = 0, X = 0;
for (int i = 1; i < m; i++) {
int x = i ^ (i >> 1);
int t = i & -i;
int j = (int)log2(t);
bool bit = x & t;
if(bit){
sum += aliceArrows[j] + 1;
score += j;
}else{
sum -= aliceArrows[j] + 1;
score -= j;
}
if(sum <= numArrows){
if(score > Max){
Max = score;
X = x;
}
}
}
for(int j = 0; j < 11; j++, X >>= 1){
if(X & 1) ans[j] = aliceArrows[j] + 1, numArrows -= ans[j];
}
ans[11] = numArrows;
return ans;
}
};