目录
一、概念
线程,是计算机中可以被cpu调度的最小单元; 进程,是计算机资源分配的最小单元。一个进程中可以有多个线程,同一个进程中的线程可以共享此进程中的资源。
进程和线程在使用上各有优缺点:线程执行开销小,但不利于资源的管理和保护,而进程正相反。
二、使用场景
计算操作需要使用CPU多核优势,IO操作不需要利用CPU的多核优势
- 计算密集型,用多进程
多进程使用例子,大量的数据计算,如计算从0+1+2+....+100000000
import time
import multiprocessing
def task(start, end, queue):
result = 0
for i in range(start, end):
result += i
queue.put(result)
if __name__ == '__main__':
queue = multiprocessing.Queue()
start_time = time.time()
p1 = multiprocessing.Process(target=task, args=(0, 50000000, queue))
p1.start()
p2 = multiprocessing.Process(target=task, args=(50000000, 100000000, queue))
p2.start()
v1 = queue.get(block=True) # 阻塞
v2 = queue.get(block=True) # 阻塞
print(v1 + v2)
end_time = time.time()
print("耗时:", end_time - start_time)
三、GIL锁
GIL 不是 Python 的特点,而是 CPython 解释器的特点;GIL 锁是加在 CPython 解释器上的,是保证解释器级别的数据的安全;GIL 锁会导致同一个进程下多个线程的不能同时执行
如果程序想利用 计算机的多核优势,让CPU同时处理一些任务,适合用多进程开发(即使资源开销大)。
如果程序不利用 计算机的多核优势,适合用多线程开发。
四、进程池
进程个数创建的并发是越多越好,要想充分的利用CPU多核优势,进程个数最好是不要超过cpu核数。
查看系统CPU核数,进程最大个数最好不要超过(CPU核数-1),因为主线程会占一个cpu
import multiprocessing
cpu_count = multiprocessing.cpu_count()
print(cpu_count)
import multiprocessing
from concurrent.futures import ProcessPoolExecutor
import time
cpu_count = multiprocessing.cpu_count()
max_count = cpu_count - 1
print(max_count)
def task(i):
time.sleep(1)
print('进程池最大个数为CPU核数-1', i)
if __name__ == '__main__':
pool = ProcessPoolExecutor(max_count)
for i in range(max_count):
pool.submit(task, i)
print('主线程占用一个cpu')