5.导数与微分

定义

导数

  设函数 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0的某邻域内有定义,若极限
lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 \lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0} xx0limxx0f(x)f(x0)
存在,则称函数 f f f在点 x 0 x_0 x0处可导,并称该极限为函数 f f f在点 x 0 x_0 x0处的导数,记作 f ′ ( x 0 ) f^\prime(x_0) f(x0)

定理

定理5.1

  若函数 f f f在点 x 0 x_0 x0可导,则 f f f在点 x 0 x_0 x0连续
   可导仅是函数在该点连续的充分条件,而不是必要条件.如函数 f ( x ) = ∣ x ∣ f(x)=|x| f(x)=x在点 x = 0 x=0 x=0处连续,但不可导.

定理5.2

  若函数 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0的某邻域内有定义,则 f ′ ( x 0 ) f^\prime(x_0) f(x0)存在的充要条件是 f + ′ ( x 0 ) f^{\prime}_+(x_0) f+(x0) f − ′ ( x 0 ) f^{\prime}_-(x_0) f(x0)都存在,且
f + ′ ( x 0 ) = f − ′ ( x 0 ) f_+^\prime(x_0)=f_-^\prime(x_0) f+(x0)=f(x0)

定理5.3 费马定理

  设函数 f f f在点 x 0 x_0 x0的某邻域内有定义,且在点 x 0 x_0 x0可导.若点 x 0 x_0 x0 f f f的极值点,则必有
f ′ ( x 0 ) = 0 f^\prime(x_0)=0 f(x0)=0
我们称满足方程 f ′ = 0 f^\prime=0 f=0的点o为稳定点

定理5.4 达布Darboux

  若函数 f f f [ a , b ] [a,b] [a,b]上可导,且 f + ′ ( a ) ≠ f − ′ ( b ) f_+^\prime(a)\neq f_-^\prime(b) f+(a)̸=f(b), k k k为介于 f + ′ ( a ) f_+^\prime(a) f+(a), f − ′ ( b ) f_-^\prime(b) f(b)之间任一实数,则至少存在一点 ξ ∈ ( a , b ) \xi \in (a,b) ξ(a,b),使得
f ′ ( ξ ) = k f^\prime(\xi)=k f(ξ)=k

定理5.10

  函数 f f f在点 x 0 x_0 x0可微的充要条件是函数 f f f在点 x 0 x_0 x0可导,而且常量A等于 f ′ ( x 0 ) f^\prime(x_0) f(x0)

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值