CNN、LeNet

本文详细介绍了卷积神经网络的基础,包括卷积层、池化层和LeNet模型。接着,讨论了AlexNet如何克服LeNet在大型数据集上的挑战,引入ReLU激活函数、Dropout和数据增强。进一步,文章阐述了VGG网络通过重复使用基础块构建深度模型的方法,以及NiN网络中1×1卷积核的角色。最后,提到了GoogLeNet的Inception块,它并行抽取信息并降低模型复杂度。
摘要由CSDN通过智能技术生成

一、卷积神经网络

卷积层:卷积层得名于卷积运算,但卷积层中用到的并非卷积运算而是互相关运算。我们将核数组 (通常称为卷积核或过滤器(filter))上下翻转、左右翻转,再与输入数组做互相关运算,这一过程就是卷积运算。由于卷积层的核数组是可学习的,所以使用互相关运算与使用卷积运算并无本质区别。

卷积层的两个超参数:填充:在输入高和宽的两侧填充元素(通常是0元素)

                                    步幅:在互相关运算中,卷积核在输入数组上滑动,每次滑动的行数与列数即是步幅(stride)

池化层:池化层主要用于缓解卷积层对位置的过度敏感性。同卷积层一样,池化层每次对输入数据的一个固定形状窗口(又称池化窗口)中的元素计算输出,池化层直接计算池化窗口内元素的最大值或者平均值,该运算也分别叫做最大池化或平均池化。

 

二、LeNet

Convolutional Neural Networks

使用全连接层的局限性

  • 图像在同一列邻近的像素在这个向量中可能相距较远。它们构成的模式可能难以被模型识别。
  • 对于大尺寸的输入图像,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值