题目
描述
验证尼科彻斯定理,即:任何一个整数m的立方都可以写成m个连续奇数之和。
例如:
1^3=1
2^3=3+5
3^3=7+9+11
4^3=13+15+17+19
输入一个正整数m(m≤100),将m的立方写成m个连续奇数之和的形式输出。
本题含有多组输入数据。
输入描述:
输入一个int整数
输出描述:
输出分解后的string
示例1
输入:
6
输出:
31+33+35+37+39+41
解题思路
(1)a*a*a/a=a*a为m个连续的奇数的中位数
(2)a*a-a+1为连续奇数的第一个数
(3)定位第一个数,剩下的数字为第一个数连续