【牛客网华为机试】HJ76 尼科彻斯定理

博客介绍了如何验证尼科彻斯定理,即任何整数的立方都能表示为该数个连续奇数之和。通过解题思路和Python代码展示了解决此问题的方法,适用于华为机试。示例展示了输入和输出格式,并提供了参考链接。
摘要由CSDN通过智能技术生成

题目

描述

验证尼科彻斯定理,即:任何一个整数m的立方都可以写成m个连续奇数之和。

例如:

1^3=1

2^3=3+5

3^3=7+9+11

4^3=13+15+17+19

输入一个正整数m(m≤100),将m的立方写成m个连续奇数之和的形式输出。

本题含有多组输入数据。

输入描述:

输入一个int整数

输出描述:

输出分解后的string

示例1

输入:

6

输出:

31+33+35+37+39+41

解题思路

(1)a*a*a/a=a*a为m个连续的奇数的中位数

(2)a*a-a+1为连续奇数的第一个数

(3)定位第一个数,剩下的数字为第一个数连续

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

202xxx

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值