【Python量化分析100例】Day1-使用Tushare获取数据

本文介绍了如何使用Python结合Tushare平台进行量化分析,包括注册Tushare账号获取Token,安装tushare模块,以及如何获取和查看未复权、复权的股票数据,如平安银行的日线数据。内容涵盖数据接口的使用方法和参数说明,为金融分析初学者提供了基础的数据获取教程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 背景

Tushare平台是目前使用python学习量化投资比较好用的而且是免费的一个数据获取平台。主要实现对金融数据从数据采集清洗加工 到 数据存储的过程,能够为金融分析人员提供快速、整洁、和多样的便于分析的数据,为他们在数据获取方面极大地减轻工作量,使他们更加专注于策略和模型的研究与实现上。

2 获取未复权数据

2.1 登陆Tushare

通过以下url,用户可以注册到自己的tushare账号,登陆账号之后,在账号的个人首页->接口Token中获取对应的Token进行数据获取的钥匙。

url = "https://tushare.pro/register?reg=399376"

2.2 用pyhton连接tushare

首先,需要安装tushare模块

pip install tushare

连接tushare

import tushare as ts
ts.set_token('your token here')#这里填入自己获取的token
pro = ts.pro_api()

2.3 用pyhton获取数据

以平安银行为例,获取2018年-2021年平安银行的日线数据:

df = pro.daily(ts_code='000001.SZ', start_date='20180701', end_date='20211022')

数据说明:

交易日每天15点~16点之间。本接口是未复权行情,停牌期间不提供数据。

输入参数:

名称 类型 必选 描述
ts_code str N 股票代码(支持多个股票同时提取,逗号分隔)
trade_date str N 交易日期(YYYYMMDD)
start_date str N
为了解决如何在Python使用tushare库获取并分析股票的历史交易数据,首先推荐查看《Python量化交易:使用tushare获取与分析股票数据》这一资料,它会指导你完成tushare的安装、数据获取与初步分析的全过程。 参考资源链接:[Python量化交易:使用tushare获取与分析股票数据](https://wenku.csdn.net/doc/2f1dn0icb8?spm=1055.2569.3001.10343) tushare库是Python中常用的金融数据接口,它允许用户方便地访问股票历史数据。安装tushare非常简单,只需在命令行中执行`pip install tushare`即可。安装完成后,你需要通过tushare官网获取一个token,用于后续的数据访问权限验证。 获取股票历史交易数据可以通过tushare提供的`get_hist_data`函数实现。如,要获取股票代码为'000001.SZ'的历史数据,你可以使用以下代码: ```python import tushare as ts # 首先设置token(替换为你的tushare token) ts.set_token('你的tushare token') # 初始化pro接口 pro = ts.pro_api() # 获取股票历史数据 df = pro.get_hist_data('000001.SZ', start='***', end='***', freq='d') ``` 在上述代码中,`start`和`end`参数定义了数据的时间范围,`freq`参数定义了数据的频率。返回的`df`是一个pandas的DataFrame,包含日期和各类交易数据。 接下来,你可以对这些数据进行基本的分析。如,计算日均交易量,绘制收盘价的移动平均线,或者分析股票价格的波动趋势等。以下是一个简单的示,展示如何计算移动平均并绘制图表: ```python import matplotlib.pyplot as plt # 计算30日移动平均线 df['MA30'] = df['close'].rolling(window=30).mean() # 绘制收盘价和移动平均线 plt.figure(figsize=(14, 7)) plt.plot(df['date'], df['close'], label='Close Price') plt.plot(df['date'], df['MA30'], label='30-Day Moving Average', color='orange') plt.title('Stock Price and Moving Average') plt.legend() plt.show() ``` 通过这样的分析,你可以对股票的历史价格表现有一个直观的了解,这将有助于进一步的数据驱动决策。 如果你已经熟练掌握了这些基本操作,并想深入了解如何利用tushare获取更深入的数据分析,或者如何结合其他数据源进行更复杂的量化交易策略开发,建议继续查阅《Python量化交易:使用tushare获取与分析股票数据》中的高级主题。这份资料不仅为你提供了入门级的指导,还涵盖了更多深入分析和策略开发的内容,非常适合希望在量化交易领域进一步提升的用户。 参考资源链接:[Python量化交易:使用tushare获取与分析股票数据](https://wenku.csdn.net/doc/2f1dn0icb8?spm=1055.2569.3001.10343)
评论 30
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

202xxx

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值