图像处理作业二

作业信息

1、证明3.44和3.45的正确性

g ( x , y ) = 1 K ∑ i = 1 K g i ( x , y ) g(x,y)=\frac{1}{K}\sum_{i=1}^K g_i(x,y) g(x,y)=K1i=1Kgi(x,y)

E [ g ( x , y ) ] = f ( x , y ) + E [ n ( x , y ) ] = f ( x , y ) E[g(x,y)]=f(x,y)+E[n(x,y)]=f(x,y) E[g(x,y)]=f(x,y)+E[n(x,y)]=f(x,y)

D [ g ] = E [ ( g − E [ g ] ) 2 ] = E [ g 2 ] − E [ g ] 2 = E [ f 2 + 2 f ( n 1 + n 2 + . . . + n K ) + n 1 2 + . . . + n K 2 + ∑ i , j n i n j K 2 ] − E [ g ] 2 = E [ f 2 ] + 1 K E [ n 2 ] − E [ f ] 2 = 1 K E [ n 2 ] − 0 = 1 K ( E [ n 2 ] − E [ n ] 2 ) = 1 K D [ n ] D[g]=E[(g-E[g])^2]=E[g^2]-E[g]^2 =E[f^2+\frac{2f(n_1+n_2+...+n_K)+n_1^2+...+n_K^2+\sum_{i,j}n_in_j}{K^2}]-E[g]^2 = E[f^2]+\frac{1}{K}E[n^2]-E[f]^2=\frac{1}{K}E[n^2]-0=\frac{1}{K}(E[n^2]-E[n]^2)=\frac{1}{K}D[n] D[g]=E[(gE[g])2]=E[g2]E[g]2=E[f2+K22f(n1+n2+...+nK)+n12+...+nK2+i,jninj]E[g]2=E[f2]+K1E[n2]E[f]2=K1E[n2]0=K1(E[n2]E[n]2)=K1D[n]

σ g ( x , y ) 2 = 1 K σ n ( x , y ) 2 \sigma^2_{g(x,y)} = \frac{1}{K}\sigma^2_{n(x,y)} σg(x,y)2=K1σn(x,y)2

2、 请计算如下两个向量与矩阵的卷积计算结果。

[ 1 , 2 , 3 , 4 , 5 , 4 , 3 , 2 , 1 ] ∗ [ 2 , 0 , − 2 ] [1,2,3,4,5,4,3,2,1] * [2,0,-2] [1,2,3,4,5,4,3,2,1][2,0,2]

a = [ 1 , 2 , 3 , 4 , 5 , 4 , 3 , 2 , 1 ] , b = [ 2 , 0 , − 2 ] a = [1,2 ,3, 4, 5, 4, 3, 2, 1],b =[2,0,-2] a=[1,2,3,4,5,4,3,2,1],b=[2,0,2]
a a a的下标从 0 0 0 8 8 8 b b b的下标从 0 0 0 2 2 2
那么 c = a ∗ b c = a*b c=ab,则 c c c的下标从 0 0 0 11 11 11
根据卷积公式: c [ x ] = ∑ t = − o o o o a [ t ] ∗ b [ x − t ] c[x] = \sum_{t = -oo}^{oo} a[t]*b[x-t] c[x]=t=ooooa[t]b[xt]
c [ 0 ] = a [ 0 ] ∗ b [ 0 ] = 2 c[0] = a[0]*b[0] = 2 c[0]=a[0]b[0]=2
c [ 1 ] = a [ 0 ] ∗ b [ 1 ] + a [ 1 ] ∗ b [ 0 ] = 4 c[1] = a[0]*b[1]+a[1]*b[0] = 4 c[1]=a[0]b[1]+a[1]b[0]=4
c [ 2 ] = a [ 0 ] ∗ b [ 2 ] + a [ 1 ] ∗ b [ 1 ] + a [ 2 ] ∗ b [ 0 ] = 4 c[2] = a[0]*b[2]+a[1]*b[1]+a[2]*b[0] = 4 c[2]=a[0]b[2]+a[1]b[1]+a[2]b[0]=4
c [ 3 ] = a [ 1 ] ∗ b [ 2 ] + a [ 2 ] ∗ b [ 1 ] + a [ 3 ] ∗ b [ 0 ] = 4 c[3] = a[1]*b[2]+a[2]*b[1]+a[3]*b[0] = 4 c[3]=a[1]b[2]+a[2]b[1]+a[3]b[0]=4
c [ 4 ] = a [ 2 ] ∗ b [ 2 ] + a [ 3 ] ∗ b [ 1 ] + a [ 4 ] ∗ b [ 0 ] = 4 c[4] = a[2]*b[2]+a[3]*b[1]+a[4]*b[0] = 4 c[4]=a[2]b[2]+a[3]b[1]+a[4]b[0]=4
c [ 5 ] = a [ 3 ] ∗ b [ 2 ] + a [ 4 ] ∗ b [ 1 ] + a [ 5 ] ∗ b [ 0 ] = 0 c[5] = a[3]*b[2]+a[4]*b[1]+a[5]*b[0] = 0 c[5]=a[3]b[2]+a[4]b[1]+a[5]b[0]=0
c [ 6 ] = a [ 4 ] ∗ b [ 2 ] + a [ 5 ] ∗ b [ 1 ] + a [ 6 ] ∗ b [ 0 ] = − 4 c[6] = a[4]*b[2]+a[5]*b[1]+a[6]*b[0] = -4 c[6]=a[4]b[2]+a[5]b[1]+a[6]b[0]=4
c [ 7 ] = a [ 5 ] ∗ b [ 2 ] + a [ 6 ] ∗ b [ 1 ] + a [ 7 ] ∗ b [ 0 ] = − 4 c[7] = a[5]*b[2]+a[6]*b[1]+a[7]*b[0] = -4 c[7]=a[5]b[2]+a[6]b[1]+a[7]b[0]=4
c [ 8 ] = a [ 6 ] ∗ b [ 2 ] + a [ 7 ] ∗ b [ 1 ] + a [ 8 ] ∗ b [ 0 ] = − 4 c[8] = a[6]*b[2]+a[7]*b[1]+a[8]*b[0] = -4 c[8]=a[6]b[2]+a[7]b[1]+a[8]b[0]=4
c [ 9 ] = a [ 7 ] ∗ b [ 2 ] + a [ 8 ] ∗ b [ 1 ] = − 4 c[9] = a[7]*b[2]+a[8]*b[1] = -4 c[9]=a[7]b[2]+a[8]b[1]=4
c [ 10 ] = a [ 8 ] ∗ b [ 2 ] − 2 c[10] = a[8]*b[2] -2 c[10]=a[8]b[2]2
c c c数组是 [ 2 , 4 , 4 , 4 , 0 , − 4 , − 4 , − 4 , − 2 ] [2,4,4,4,0,-4,-4,-4,-2] [2,4,4,4,0,4,4,4,2]

根据二维卷积公式:

c [ x , y ] = ∑ s ∑ t a [ s , t ] ∗ b [ x − s , y − t ] c[x,y] = \sum_s\sum_ta[s,t]*b[x-s,y-t] c[x,y]=sta[s,t]b[xs,yt]

可知,卷积结果为

[ − 1 3 − 1 3 − 2 0 4 − 3 − 6 − 4 4 − 4 2 11 − 3 − 7 − 6 3 − 6 4 15 − 3 − 11 − 4 8 − 10 3 17 − 7 − 11 2 5 − 10 6 15 − 8 − 5 6 − 4 − 6 9 8 − 3 − 1 3 − 3 − 2 4 2 ] \left[ \begin{matrix} -1&3&-1&3&-2&0&4\\-3&-6&-4&4&-4&2&11\\-3&-7&-6&3&-6&4&15\\-3&-11&-4&8&-10&3&17\\-7&-11&2&5&-10&6&15\\-8&-5&6&-4&-6&9&8\\-3&-1&3&-3&-2&4&2 \end{matrix} \right] 133378336711115114642633438543246101062024369441115171582

3. 证明拉普拉斯变换具有旋转不变形

∇ f ( x , y ) = ∂ 2 f ∂ x 2 + ∂ 2 f ∂ y 2 \nabla f(x,y)=\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} f(x,y)=x22f+y22f
我们假设新的点为 ( x 1 , y 1 ) (x_1,y_1) (x1,y1)
并且假设 ( x 1 , y 1 ) (x_1,y_1) (x1,y1)是由 ( x , y ) (x,y) (x,y)顺时针旋转 θ \theta θ得到的。
那么有公式 x = x 1 ∗ c o s θ − y 1 ∗ s i n θ x = x_1*cos\theta-y_1*sin\theta x=x1cosθy1sinθ, y = x 1 ∗ s i n θ + y 1 ∗ c o s θ y=x1*sin\theta+y_1*cos\theta y=x1sinθ+y1cosθ

从而有 ∂ f ∂ x 1 = ∂ f ∂ x ∂ x ∂ x 1 + ∂ f ∂ y ∂ y ∂ x 1 = ∂ f ∂ x c o s θ + ∂ f ∂ y s i n θ \frac{\partial f}{\partial x_1}=\frac{\partial f}{\partial x}\frac{\partial x}{\partial x_1} + \frac{\partial f}{\partial y}\frac{\partial y}{\partial x_1}=\frac{\partial f}{\partial x}cos\theta+\frac{\partial f}{\partial y}sin\theta x1f=xfx1x+yfx1y=xfcosθ+yfsinθ

∂ 2 f ∂ x 1 2 = ∂ 2 f ∂ x 2 ∂ x ∂ x 1 c o s θ + ∂ 2 f ∂ y 2 ∂ y ∂ x 1 s i n θ = ∂ 2 f ∂ x 2 c o s 2 θ + ∂ 2 f ∂ y 2 s i n 2 θ \frac{\partial^2 f}{\partial x_1^2}=\frac{\partial^2 f}{\partial x^2}\frac{\partial x}{\partial x_1}cos\theta+\frac{\partial^2 f}{\partial y^2}\frac{\partial y}{\partial x_1}sin\theta=\frac{\partial^2 f}{\partial x^2}cos^2\theta+\frac{\partial^2 f}{\partial y^2}sin^2\theta x122f=x22fx1xcosθ+y22fx1ysinθ=x22fcos2θ+y22fsin2θ

∂ 2 f ∂ y 1 2 = − ∂ 2 f ∂ x 2 ∂ x ∂ y 1 s i n θ + ∂ 2 f ∂ y 2 ∂ y ∂ y 1 c o s θ = ∂ 2 f ∂ x 2 s i n 2 θ + ∂ 2 f ∂ y 2 c o s 2 θ \frac{\partial^2 f}{\partial y_1^2}=-\frac{\partial^2 f}{\partial x^2}\frac{\partial x}{\partial y_1}sin\theta + \frac{\partial^2 f}{\partial y^2}\frac{\partial y}{\partial y_1}cos\theta=\frac{\partial^2 f}{\partial x^2}sin^2\theta+\frac{\partial^2 f}{\partial y^2}cos^2\theta y122f=x22fy1xsinθ+y22fy1ycosθ=x22fsin2θ+y22fcos2θ

∂ 2 f ∂ x 1 2 + ∂ 2 f ∂ y 1 2 = ∂ 2 f ∂ x 2 + ∂ 2 f ∂ y 2 \frac{\partial^2 f}{\partial x_1^2} + \frac{\partial^2 f}{\partial y_1^2} = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} x122f+y122f=x22f+y22f

证明完成。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值