图像处理作业第7次

图像处理作业第7次

1.请根据课本中Z变换的定义,证明如下结论。

  • (1)若 x ( n ) x(n) x(n) Z Z Z变换为 X ( z ) X(z) X(z),则 ( − 1 ) n x ( n ) (-1)^nx(n) (1)nx(n) Z Z Z变换为 X ( − z ) X(-z) X(z)
    根据 Z Z Z变换的定义 X ( z ) = ∑ x ( n ) z − n , ∑ ( − 1 ) n x ( n ) z − n = ∑ x ( n ) ( − z ) − n = X ( − z ) X(z)=\sum x(n)z^{-n},\sum(-1)^nx(n)z^{-n}=\sum x(n)(-z)^{-n}=X(-z) X(z)=x(n)zn,(1)nx(n)zn=x(n)(z)n=X(z)

  • (2)若 x ( n ) x(n) x(n) Z Z Z变换为 X ( z ) X(z) X(z),则 x ( − n ) x(-n) x(n) Z Z Z变换为 X ( 1 z ) X(\frac{1}{z}) X(z1)
    根据 Z Z Z变换的定义 X ( z ) = ∑ x ( n ) z − n , ∑ x ( − n ) z − n = ∑ x ( n ) z − ( − n ) = ∑ x ( n ) ( 1 z ) − n = X ( 1 z ) X(z)=\sum x(n)z^{-n},\sum x(-n)z^{-n}=\sum x(n)z^{-(-n)}=\sum x(n){(\frac{1}{z})}^{-n}=X(\frac{1}{z}) X(z)=x(n)zn,x(n)zn=x(n)z(n)=x(n)(z1)n=X(z1)

  • (3)若 x ( n ) x(n) x(n) Z Z Z变换为 X ( z ) X(z) X(z),证明: x d o w n ( n ) = x ( 2 n ) ↔ X d o w n ( z ) = 1 / 2 [ X ( z 1 / 2 ) + X ( − z 1 / 2 ) ] x_{down}(n)=x(2n) \leftrightarrow X_{down}(z)=1/2[X(z^{1/2})+X(-z^{1/2})] xdown(n)=x(2n)Xdown(z)=1/2[X(z1/2)+X(z1/2)]
    根据 Z Z Z变换的定义可知: X d o w n ( z ) = ∑ x d o w n ( n ) z − n = ∑ x ( 2 n ) z − n = ∑ 1 / 2 [ x ( 2 n ) ( z 1 / 2 ) − 2 n + x ( 2 n ) ( − z 1 / 2 ) − 2 n ] = ∑ 1 / 2 [ x ( 2 n ) ( z 1 / 2 ) − 2 n + x ( 2 n ) ( − z 1 / 2 ) − 2 n ] + ∑ 1 / 2 [ x ( 2 n − 1 ) ( z 1 / 2 ) − ( 2 n − 1 ) + x ( 2 n − 1 ) ( − z 1 / 2 ) − ( 2 n − 1 ) ] = 1 / 2 [ X ( z 1 / 2 ) + X ( − z 1 / 2 ) ] X_{down}(z)=\sum x_{down}(n)z^{-n}=\sum x(2n)z^{-n}=\sum 1/2[x(2n)(z^{1/2})^{-2n}+x(2n)(-z^{1/2})^{-2n}]=\sum 1/2[x(2n)(z^{1/2})^{-2n}+x(2n)(-z^{1/2})^{-2n}]+\sum 1/2[x(2n-1)(z^{1/2})^{-(2n-1)}+x(2n-1)(-z^{1/2})^{-(2n-1)}]=1/2[X(z^{1/2})+X(-z^{1/2})] Xdown(z)=xdown(n)zn=x(2n)zn=1/2[x(2n)(z1/2)2n+x(2n)(z1/2)2n]=1/2[x(2n)(z1/2)2n+x(2n)(z1/2)2n]+1/2[x(2n1)(z1/2)(2n1)+x(2n1)(z1/2)(2n1)]=1/2[X(z1/2)+X(z1/2)]

2.证明:

  • G 1 ( z ) = − z − 2 k + 1 G 0 ( − z − 1 ) G_1(z)=-z^{-2k+1}G_0(-z^{-1}) G1(z)=z2k+1G0(z1),证明: g 1 ( n ) = ( − 1 ) n g 0 ( 2 k − 1 − n ) g_1(n)=(-1)^ng_0(2k-1-n) g1(n)=(1)ng0(2k1n)

− z 2 k + 1 G 0 ( − z − 1 ) ↔ ∑ g 0 ( n ) ( − z − 1 ) − n ( − z − 2 k + 1 ) = ∑ g 0 ( n ) ( − 1 ) n + 1 z n − 2 k + 1 -z^{2k+1}G_0(-z^{-1}) \leftrightarrow\sum g_0(n)(-z^{-1})^{-n}(-z^{-2k+1})=\sum g_0(n)(-1)^{n+1}z^{n-2k+1} z2k+1G0(z1)g0(n)(z1)n(z2k+1)=g0(n)(1)n+1zn2k+1

− t = n − 2 k + 1 -t=n-2k+1 t=n2k+1

那么

∑ g 0 ( n ) ( − 1 ) n + 1 z n + 2 k + 1 = ∑ g 0 ( 2 k − 1 − t ) ( − 1 ) 2 k − t z − t \sum g_0(n)(-1)^{n+1}z^{n+2k+1}=\sum g_0(2k-1-t)(-1)^{2k-t}z^{-t} g0(n)(1)n+1zn+2k+1=g0(2k1t)(1)2ktzt

t t t换成 n n n,得到:

∑ ( − 1 ) n g 0 ( 2 k − 1 − n ) z − n \sum (-1)^ng_0(2k-1-n)z^{-n} (1)ng0(2k1n)zn

因此 g 1 ( n ) = ( − 1 ) n g 0 ( 2 k − 1 − n ) g_1(n)=(-1)^ng_0(2k-1-n) g1(n)=(1)ng0(2k1n)

3.假设课本中给出完美重建滤波器的正交族对应的三个滤波器间的关系式是正确的,并以此为基础,推导 h 0 , h 1 h_0,h_1 h0,h1的关系。

当满足如下式子时:

g 1 ( n ) = ( − 1 ) n g 0 ( 2 k − 1 − n ) g_1(n)=(-1)^ng_0(2k-1-n) g1(n)=(1)ng0(2k1n)

h i ( n ) = g i ( 2 k − 1 − n ) , i = { 0 , 1 } h_i(n)=g_i(2k-1-n),i=\{0,1\} hi(n)=gi(2k1n),i={0,1}

h 0 ( n ) = g 0 ( 2 k − 1 − n ) → g 0 ( n ) = h 0 ( 2 k − 1 − n ) h_0(n)=g_0(2k-1-n) \rightarrow g_0(n)=h_0(2k-1-n) h0(n)=g0(2k1n)g0(n)=h0(2k1n)

h 1 ( n ) = g 1 ( 2 k − 1 − n ) = ( − 1 ) 2 k − 1 − n g 0 ( 2 k − 1 − ( 2 k − 1 − n ) ) = ( − 1 ) n + 1 g 0 ( n ) = ( − 1 ) n + 1 h 0 ( 2 k − 1 − n ) h_1(n)=g_1(2k-1-n)=(-1)^{2k-1-n}g_0(2k-1-(2k-1-n))=(-1)^{n+1}g_0(n)=(-1)^{n+1}h_0(2k-1-n) h1(n)=g1(2k1n)=(1)2k1ng0(2k1(2k1n))=(1)n+1g0(n)=(1)n+1h0(2k1n)

是故

h 1 ( n ) = ( − 1 ) n + 1 h 0 ( 2 k − 1 − n ) h_1(n)=(-1)^{n+1}h_0(2k-1-n) h1(n)=(1)n+1h0(2k1n)

4. 哈尔小波

截图显示:
在这里插入图片描述
1 4 [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 2 2 2 2 − 2 − 2 − 2 − 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 − 2 − 2 − 2 − 2 2 2 − 2 − 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 − 2 − 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 − 2 − 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 − 2 − 2 2 2 − 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 − 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 − 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 − 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 − 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 − 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 − 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 − 2 2 ] \frac{1}{4} \left[ \begin{matrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1\\ \sqrt 2 & \sqrt 2 & \sqrt 2 & \sqrt 2 & -\sqrt 2 & -\sqrt 2 & -\sqrt 2 & -\sqrt 2 & 0 & 0& 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \sqrt 2 & \sqrt 2 & \sqrt 2 & \sqrt 2 & -\sqrt 2 & -\sqrt 2 & -\sqrt 2 & -\sqrt 2\\ 2 & 2 & -2 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 2 & 2 & -2 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 2 & -2 & -2 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 2 & -2 & -2\\ 2\sqrt 2 & -2\sqrt 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 2\sqrt 2 & -2\sqrt 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 2\sqrt 2 & -2\sqrt 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 2\sqrt 2 & -2\sqrt 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2\sqrt 2 & -2\sqrt 2 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2\sqrt 2 & -2\sqrt 2 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2\sqrt 2 & -2\sqrt 2 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2\sqrt 2 & -2\sqrt 2\\ \end{matrix} \right] 41112 0200022 0000000112 0200022 0000000112 02000022 000000112 02000022 000000112 002000022 00000112 002000022 00000112 0020000022 0000112 0020000022 00001102 0020000022 0001102 0020000022 0001102 00200000022 001102 00200000022 001102 000200000022 01102 000200000022 01102 0002000000022 1102 0002000000022

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值