图像处理作业第7次
1.请根据课本中Z变换的定义,证明如下结论。
-
(1)若 x ( n ) x(n) x(n)的 Z Z Z变换为 X ( z ) X(z) X(z),则 ( − 1 ) n x ( n ) (-1)^nx(n) (−1)nx(n)的 Z Z Z变换为 X ( − z ) X(-z) X(−z)
根据 Z Z Z变换的定义 X ( z ) = ∑ x ( n ) z − n , ∑ ( − 1 ) n x ( n ) z − n = ∑ x ( n ) ( − z ) − n = X ( − z ) X(z)=\sum x(n)z^{-n},\sum(-1)^nx(n)z^{-n}=\sum x(n)(-z)^{-n}=X(-z) X(z)=∑x(n)z−n,∑(−1)nx(n)z−n=∑x(n)(−z)−n=X(−z)。 -
(2)若 x ( n ) x(n) x(n)的 Z Z Z变换为 X ( z ) X(z) X(z),则 x ( − n ) x(-n) x(−n)的 Z Z Z变换为 X ( 1 z ) X(\frac{1}{z}) X(z1)
根据 Z Z Z变换的定义 X ( z ) = ∑ x ( n ) z − n , ∑ x ( − n ) z − n = ∑ x ( n ) z − ( − n ) = ∑ x ( n ) ( 1 z ) − n = X ( 1 z ) X(z)=\sum x(n)z^{-n},\sum x(-n)z^{-n}=\sum x(n)z^{-(-n)}=\sum x(n){(\frac{1}{z})}^{-n}=X(\frac{1}{z}) X(z)=∑x(n)z−n,∑x(−n)z−n=∑x(n)z−(−n)=∑x(n)(z1)−n=X(z1)。 -
(3)若 x ( n ) x(n) x(n)的 Z Z Z变换为 X ( z ) X(z) X(z),证明: x d o w n ( n ) = x ( 2 n ) ↔ X d o w n ( z ) = 1 / 2 [ X ( z 1 / 2 ) + X ( − z 1 / 2 ) ] x_{down}(n)=x(2n) \leftrightarrow X_{down}(z)=1/2[X(z^{1/2})+X(-z^{1/2})] xdown(n)=x(2n)↔Xdown(z)=1/2[X(z1/2)+X(−z1/2)]
根据 Z Z Z变换的定义可知: X d o w n ( z ) = ∑ x d o w n ( n ) z − n = ∑ x ( 2 n ) z − n = ∑ 1 / 2 [ x ( 2 n ) ( z 1 / 2 ) − 2 n + x ( 2 n ) ( − z 1 / 2 ) − 2 n ] = ∑ 1 / 2 [ x ( 2 n ) ( z 1 / 2 ) − 2 n + x ( 2 n ) ( − z 1 / 2 ) − 2 n ] + ∑ 1 / 2 [ x ( 2 n − 1 ) ( z 1 / 2 ) − ( 2 n − 1 ) + x ( 2 n − 1 ) ( − z 1 / 2 ) − ( 2 n − 1 ) ] = 1 / 2 [ X ( z 1 / 2 ) + X ( − z 1 / 2 ) ] X_{down}(z)=\sum x_{down}(n)z^{-n}=\sum x(2n)z^{-n}=\sum 1/2[x(2n)(z^{1/2})^{-2n}+x(2n)(-z^{1/2})^{-2n}]=\sum 1/2[x(2n)(z^{1/2})^{-2n}+x(2n)(-z^{1/2})^{-2n}]+\sum 1/2[x(2n-1)(z^{1/2})^{-(2n-1)}+x(2n-1)(-z^{1/2})^{-(2n-1)}]=1/2[X(z^{1/2})+X(-z^{1/2})] Xdown(z)=∑xdown(n)z−n=∑x(2n)z−n=∑1/2[x(2n)(z1/2)−2n+x(2n)(−z1/2)−2n]=∑1/2[x(2n)(z1/2)−2n+x(2n)(−z1/2)−2n]+∑1/2[x(2n−1)(z1/2)−(2n−1)+x(2n−1)(−z1/2)−(2n−1)]=1/2[X(z1/2)+X(−z1/2)]。
2.证明:
- 若 G 1 ( z ) = − z − 2 k + 1 G 0 ( − z − 1 ) G_1(z)=-z^{-2k+1}G_0(-z^{-1}) G1(z)=−z−2k+1G0(−z−1),证明: g 1 ( n ) = ( − 1 ) n g 0 ( 2 k − 1 − n ) g_1(n)=(-1)^ng_0(2k-1-n) g1(n)=(−1)ng0(2k−1−n)
− z 2 k + 1 G 0 ( − z − 1 ) ↔ ∑ g 0 ( n ) ( − z − 1 ) − n ( − z − 2 k + 1 ) = ∑ g 0 ( n ) ( − 1 ) n + 1 z n − 2 k + 1 -z^{2k+1}G_0(-z^{-1}) \leftrightarrow\sum g_0(n)(-z^{-1})^{-n}(-z^{-2k+1})=\sum g_0(n)(-1)^{n+1}z^{n-2k+1} −z2k+1G0(−z−1)↔∑g0(n)(−z−1)−n(−z−2k+1)=∑g0(n)(−1)n+1zn−2k+1
令 − t = n − 2 k + 1 -t=n-2k+1 −t=n−2k+1
那么
∑ g 0 ( n ) ( − 1 ) n + 1 z n + 2 k + 1 = ∑ g 0 ( 2 k − 1 − t ) ( − 1 ) 2 k − t z − t \sum g_0(n)(-1)^{n+1}z^{n+2k+1}=\sum g_0(2k-1-t)(-1)^{2k-t}z^{-t} ∑g0(n)(−1)n+1zn+2k+1=∑g0(2k−1−t)(−1)2k−tz−t
将 t t t换成 n n n,得到:
∑ ( − 1 ) n g 0 ( 2 k − 1 − n ) z − n \sum (-1)^ng_0(2k-1-n)z^{-n} ∑(−1)ng0(2k−1−n)z−n
因此 g 1 ( n ) = ( − 1 ) n g 0 ( 2 k − 1 − n ) g_1(n)=(-1)^ng_0(2k-1-n) g1(n)=(−1)ng0(2k−1−n)
3.假设课本中给出完美重建滤波器的正交族对应的三个滤波器间的关系式是正确的,并以此为基础,推导 h 0 , h 1 h_0,h_1 h0,h1的关系。
当满足如下式子时:
g 1 ( n ) = ( − 1 ) n g 0 ( 2 k − 1 − n ) g_1(n)=(-1)^ng_0(2k-1-n) g1(n)=(−1)ng0(2k−1−n)
h i ( n ) = g i ( 2 k − 1 − n ) , i = { 0 , 1 } h_i(n)=g_i(2k-1-n),i=\{0,1\} hi(n)=gi(2k−1−n),i={0,1}
h 0 ( n ) = g 0 ( 2 k − 1 − n ) → g 0 ( n ) = h 0 ( 2 k − 1 − n ) h_0(n)=g_0(2k-1-n) \rightarrow g_0(n)=h_0(2k-1-n) h0(n)=g0(2k−1−n)→g0(n)=h0(2k−1−n)
h 1 ( n ) = g 1 ( 2 k − 1 − n ) = ( − 1 ) 2 k − 1 − n g 0 ( 2 k − 1 − ( 2 k − 1 − n ) ) = ( − 1 ) n + 1 g 0 ( n ) = ( − 1 ) n + 1 h 0 ( 2 k − 1 − n ) h_1(n)=g_1(2k-1-n)=(-1)^{2k-1-n}g_0(2k-1-(2k-1-n))=(-1)^{n+1}g_0(n)=(-1)^{n+1}h_0(2k-1-n) h1(n)=g1(2k−1−n)=(−1)2k−1−ng0(2k−1−(2k−1−n))=(−1)n+1g0(n)=(−1)n+1h0(2k−1−n)
是故
h 1 ( n ) = ( − 1 ) n + 1 h 0 ( 2 k − 1 − n ) h_1(n)=(-1)^{n+1}h_0(2k-1-n) h1(n)=(−1)n+1h0(2k−1−n)
4. 哈尔小波
截图显示:
1
4
[
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
−
1
−
1
−
1
−
1
−
1
−
1
−
1
−
1
2
2
2
2
−
2
−
2
−
2
−
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
2
2
2
−
2
−
2
−
2
−
2
2
2
−
2
−
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
2
−
2
−
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
2
−
2
−
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
2
−
2
−
2
2
2
−
2
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
2
−
2
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
2
−
2
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
2
−
2
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
2
−
2
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
2
−
2
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
2
−
2
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
2
−
2
2
]
\frac{1}{4} \left[ \begin{matrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1\\ \sqrt 2 & \sqrt 2 & \sqrt 2 & \sqrt 2 & -\sqrt 2 & -\sqrt 2 & -\sqrt 2 & -\sqrt 2 & 0 & 0& 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \sqrt 2 & \sqrt 2 & \sqrt 2 & \sqrt 2 & -\sqrt 2 & -\sqrt 2 & -\sqrt 2 & -\sqrt 2\\ 2 & 2 & -2 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 2 & 2 & -2 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 2 & -2 & -2 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 2 & -2 & -2\\ 2\sqrt 2 & -2\sqrt 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 2\sqrt 2 & -2\sqrt 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 2\sqrt 2 & -2\sqrt 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 2\sqrt 2 & -2\sqrt 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2\sqrt 2 & -2\sqrt 2 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2\sqrt 2 & -2\sqrt 2 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2\sqrt 2 & -2\sqrt 2 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2\sqrt 2 & -2\sqrt 2\\ \end{matrix} \right]
41⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡1120200022000000011202000−2200000001120−20000220000001120−20000−2200000011−20020000220000011−20020000−220000011−200−20000022000011−200−200000−2200001−10200200000220001−10200200000−220001−10200−200000022001−10200−2000000−22001−10−200020000002201−10−20002000000−2201−10−2000−20000000221−10−2000−20000000−22⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤