codeforces G - Almost Increasing Array 动态规划、动态开点线段树

题意

给出一个序列,允许删除一个元素,并将任意元素的值修改为任意整数,问最少修改多少个元素使得序列变成严格单调递增的序列?


题解

这道题目很具有启发性:
不考虑删除元素,原数列各个数值减去他们下标得到一个新的序列,那么新的序列的最长不减序列就是不需要修改的元素个数len,需要修改的元素个数就是n-len即可。

这道题也是这么做的,我们枚举要删除的元素下标为 k k ,并且得到以元素k1为结尾的最长不减序列的长度 len1 l e n 1 ,以及得到以元素 i i 为开始的最长不减序列的长度len2(要求 a[i]+1>=a[k1] a [ i ] + 1 >= a [ k − 1 ] ,因为这样才能将两部分拼接起来),那么这就是删除元素 k k 时候得到的最多不需修改的元素的数量,枚举k取最大值即可。

怎样维护以 a[i] a [ i ] 结尾的最长不减序列的长度和以 a[i] a [ i ] 开头的最长不减序列的长度呢?

  • 思路就是dp +(可持久化/动态开点)线段树。
  • dp[a[i]] d p [ a [ i ] ] 表示以a[i]结尾的不减序列的最长长度,那么 dp[a[i]]=max(dp[1],dp[2],...,dp[a[i]])+1 d p [ a [ i ] ] = m a x ( d p [ 1 ] , d p [ 2 ] , . . . , d p [ a [ i ] ] ) + 1
  • 线段树的动态开点功能使得不需要离散化。

代码

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int MAXN = 400008;
struct segtree{
    int root[MAXN];
    int val[MAXN * 20];
    int lson[MAXN * 20];
    int rson[MAXN * 20];
    int index;
    int n;
    void init(int N){
        n = N;
        index = 0;
        memset(val,0,sizeof(root));
        memset(val,0,sizeof(val));
        memset(lson,0,sizeof(lson));
        memset(rson,0,sizeof(rson));
    }
    void insert(int num,int& rt,int l,int r,int v){
        int nrt = ++index;
        lson[nrt] = lson[rt];
        rson[nrt] = rson[rt];
        val[nrt] = val[rt];
        rt = nrt;
        if(l == r) {
            val[rt] = v;
            return ;
        }
        int mid = (l + r) / 2;
        if(num <= mid) insert(num,lson[rt],l,mid,v);
        else insert(num,rson[rt],mid+1,r,v);
        val[rt] = max(val[lson[rt]],val[rson[rt]]);
    }
    int _query(int rt,int l,int r,int ul,int ur){
        if(r < ul || l > ur) return 0;
        if(ul <= l && r <= ur) return val[rt];
        int mid = (l + r) / 2;
        int a = _query(lson[rt],l,mid,ul,ur);
        int b = _query(rson[rt],mid+1,r,ul,ur);
        return max(a,b);
    }
    void putone(int i,int pos,int num){
        root[i] = root[i-1];
        insert(pos,root[i],1,n,num);
    }
}seg,segp;
const int inf = 1e9+MAXN;
int n;
int a[MAXN],dp[MAXN];
int main(){
    seg.init(inf);
    segp.init(inf);
    cin>>n;
    for(int i = 1;i <= n;++i){
        scanf("%d",&a[i]);
        a[i] = a[i]-i+MAXN;
    }
    int ans = 0;
    for(int i = n;i >= 1;--i){
        int mxlen = seg._query(seg.root[n-i],1,inf,a[i],inf);
        seg.putone(n-i+1,a[i],mxlen+1);
        ans = max(ans,mxlen+1);
        //cout<<i<<':'<<mxlen<<endl;
    }
    for(int i = 1;i <= n;++i){
        int mxlen = segp._query(segp.root[i-1],1,inf,1,a[i]);
        segp.putone(i,a[i],mxlen+1);
        ans = max(ans,mxlen+1);
        //cout<<i<<':'<<mxlen<<endl;
    }
    for(int i = 2;i < n;++i){
        int len1 = segp._query(segp.root[i],1,inf,a[i-1],a[i-1]);
        int len2 = seg._query(seg.root[n-i],1,inf,a[i-1]-1,inf);
        ans = max(ans,len1+len2);
    }
    cout<<max(0,n-ans-1)<<endl;
    return 0;    
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值