题目
题意
给出两段石头剪刀布的顺序
S
S
和,其中
T
T
要短一些,现在让你把往
S
S
的某个位置上靠,使得靠好了以后,能赢
S
S
的子段的次数最大。
如图:
题解
这道题很典型的FFT啦,首先我们把序列换成它能赢的序列 T′ T ′ ,也就是 T T 序列中的对应的换成 S、P、R S 、 P 、 R 形成 T′ T ′ 。
这样的话,我们只需要在 S S 中找一段匹配程度最大的就可以了,这的最大的匹配程度就是答案。
为了匹配,我们把倒换过来,记为
rT′
r
T
′
,我们想象一下做卷积的过程,
发现新的卷积序列中的第
k
k
个位置的值等于与
T′
T
′
序列对应位置乘积之和。
为了使用卷积解决这个问题,我们把问题拆成3部分,即单独考虑 P、S、R P 、 S 、 R 时候,最大匹配程度,最后将相同位置的匹配程度加起来就可以了。
代码
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
double pi = acos(-1.0);
struct complex{
double re,im;
complex(double r = 0.0,double i = 0.0):re(r),im(i){};
complex operator+(complex com){
return complex(re+com.re,im+com.im);
}
complex operator-(complex com){
return complex(re-com.re,im-com.im);
}
complex operator*(complex com){
return complex(re*com.re-im*com.im,re*com.im+im*com.re);
}
};
complex wn,wntmp;
void rader(complex arr[],int n){
int num = n-1;
for(int i = 0;i < n;++i){
int tn = n>>1;
while(num && num >= tn) num ^= tn,tn >>= 1;
num |= tn;
if(num > i) swap(arr[i],arr[num]);
}
}
void FFT(complex cs[],int n,int f){
rader(cs,n);
for(int s = 1;s < n;s <<= 1){
wn = complex(cos(f*2*pi/(s*2)),sin(f*2*pi/(s*2)));
for(int offset = 0;offset < n;offset += s<<1){
wntmp = complex(1.0,0.0);
for(int i = 0;i < s;++i){
complex u = cs[offset+i],v = cs[offset+i+s]*wntmp;
cs[offset+i] = u + v;
cs[offset+i+s] = u - v;
wntmp = wntmp * wn;
}
}
}
if(f == -1)
for(int i = 0;i < n;++i)
cs[i].re /= n;
}
int n,m;
const int maxn = 1e5+7;
char S[maxn],T[maxn];
int ans[maxn*4];
complex csA[maxn*4],csB[maxn*4];
#define pr(x) cout<<#x<<":"<<x<<endl
void solve(char c){
memset(csA,0,sizeof(csA));
memset(csB,0,sizeof(csB));
for(int i = 0;i < n;++i) csA[i] = complex(S[i]==c?1.0:0);
for(int i = 0;i < m;++i) csB[i] = complex(T[i]==c?1.0:0);
int len = 1;
while(len < n) len<<=1;
len <<= 1;
FFT(csA,len,1);
FFT(csB,len,1);
for(int i = 0;i < len;++i) csA[i] = csA[i]*csB[i];
FFT(csA,len,-1);
for(int i = m-1;i < len;++i) {
ans[i] += int(csA[i].re+0.5);
};
}
char big(char c){
if(c == 'R') return 'S';
if(c == 'S') return 'P';
if(c == 'P') return 'R';
}
int main(){
cin>>n>>m>>S>>T;
for(int i = 0;i < m/2;++i) swap(T[i],T[m-1-i]);
for(int i = 0;i < m;++i) T[i] = big(T[i]);
solve('P');
solve('S');
solve('R');
int mx = 0;
for(int i = 0;i < n+m+1;++i) mx = max(mx,ans[i]);
cout<<mx<<endl;
return 0;
}