Problem H Rock Paper Scissors,FFT

本文介绍了一种利用快速傅立叶变换(FFT)算法来解决游戏策略匹配问题的方法。具体而言,通过将石头剪刀布游戏的策略转换为能够直接进行数学运算的形式,并运用FFT算法找到最优匹配策略,从而最大化赢得比赛的概率。
摘要由CSDN通过智能技术生成

题目

题目链接

题意

给出两段石头剪刀布的顺序 S S T,其中 T T 要短一些,现在让你把T S S 的某个位置上靠,使得靠好了以后,T能赢 S S 的子段的次数最大。
如图:这里写图片描述

题解

这道题很典型的FFT啦,首先我们把T序列换成它能赢的序列 T T ′ ,也就是 T T 序列中的RSP对应的换成 SPR S 、 P 、 R 形成 T T ′

这样的话,我们只需要在 S S 中找一段匹配程度最大的就可以了,这的最大的匹配程度就是答案。

为了匹配,我们把T倒换过来,记为 rT r T ′ ,我们想象一下做卷积的过程,
发现新的卷积序列中的第 k k 个位置的值等于S[klenT,k1] T T ′ 序列对应位置乘积之和。

为了使用卷积解决这个问题,我们把问题拆成3部分,即单独考虑 PSR P 、 S 、 R 时候,最大匹配程度,最后将相同位置的匹配程度加起来就可以了。

代码

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
double pi = acos(-1.0);
struct complex{
    double re,im;
    complex(double r = 0.0,double i = 0.0):re(r),im(i){};
    complex operator+(complex com){
        return complex(re+com.re,im+com.im);
    }
    complex operator-(complex com){
        return complex(re-com.re,im-com.im);
    }
    complex operator*(complex com){
        return complex(re*com.re-im*com.im,re*com.im+im*com.re);
    }
};
complex wn,wntmp;
void rader(complex arr[],int n){
    int num = n-1;
    for(int i = 0;i < n;++i){
        int tn = n>>1;
        while(num && num >= tn) num ^= tn,tn >>= 1;
        num |= tn;
        if(num > i) swap(arr[i],arr[num]);
    }
}
void FFT(complex cs[],int n,int f){
    rader(cs,n);
    for(int s = 1;s < n;s <<= 1){
        wn = complex(cos(f*2*pi/(s*2)),sin(f*2*pi/(s*2)));
        for(int offset = 0;offset < n;offset += s<<1){
            wntmp = complex(1.0,0.0);
            for(int i = 0;i < s;++i){
                complex u = cs[offset+i],v = cs[offset+i+s]*wntmp;
                cs[offset+i] = u + v;
                cs[offset+i+s] = u - v;
                wntmp = wntmp * wn;
            }
        }
    }
    if(f == -1)
        for(int i = 0;i < n;++i)
            cs[i].re /= n;
}
int n,m;
const int maxn = 1e5+7;
char S[maxn],T[maxn];
int ans[maxn*4];
complex csA[maxn*4],csB[maxn*4];
#define pr(x) cout<<#x<<":"<<x<<endl
void solve(char c){
    memset(csA,0,sizeof(csA));
    memset(csB,0,sizeof(csB));
    for(int i = 0;i < n;++i) csA[i] = complex(S[i]==c?1.0:0);
    for(int i = 0;i < m;++i) csB[i] = complex(T[i]==c?1.0:0);
    int len = 1;
    while(len < n) len<<=1;
    len <<= 1;
    FFT(csA,len,1);
    FFT(csB,len,1);
    for(int i = 0;i < len;++i) csA[i] = csA[i]*csB[i];
    FFT(csA,len,-1);
    for(int i = m-1;i < len;++i) {
        ans[i] += int(csA[i].re+0.5);
    };

}
char big(char c){
    if(c == 'R') return 'S';
    if(c == 'S') return 'P';
    if(c == 'P') return 'R';
}
int main(){
    cin>>n>>m>>S>>T;
    for(int i = 0;i < m/2;++i) swap(T[i],T[m-1-i]);
    for(int i = 0;i < m;++i) T[i] = big(T[i]);
    solve('P');
    solve('S');
    solve('R');

    int mx = 0;
    for(int i = 0;i < n+m+1;++i) mx = max(mx,ans[i]);
    cout<<mx<<endl;

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值