数学推导题,NTT,快速数论变换,Wannafly-导数卷积

导数卷积


题目描述

在这里插入图片描述

题解

参考了一下标程的推导过程,因为这个推导对我这种数学弱渣真的有点难鸭.

[1] f ( x ) f(x) f(x) i i i次导函数:

f ( i ) ( x ) = a i ∗ i ! 0 ! + a i + 1 ∗ ( i + 1 ) ! 1 ! ∗ x 1 + . . . + a n − 1 ∗ ( n − 1 ) ! ( n − 1 − i ) ! ∗ x n − 1 − i f^{(i)}(x) = a_{i}*\frac{i!}{0!} + a_{i+1}*\frac{(i+1)!}{1!}*x^{1} +...+a_{n-1}*\frac{(n-1)!}{(n-1-i)!}*x^{n-1-i} f(i)(x)=ai0!i!+ai+11!(i+1)!x1+...+an1(n1i)!(n1)!xn1i

[2] f ( x ) f(x) f(x) n − i − 1 n-i-1 ni1次导函数:

f ( n − i − 1 ) ( x ) = a n − i − 1 ∗ ( n − 1 − i ) ! 0 ! + a n − i ∗ ( n − i ) ! 1 ! ∗ x 1 + . . . + a n − 1 ∗ ( n − 1 ) ! i ! ∗ x i f^{(n-i-1)}(x) = a_{n-i-1}*\frac{(n-1-i)!}{0!} + a_{n-i}*\frac{(n-i)!}{1!}*x^{1} +...+a_{n-1}*\frac{(n-1)!}{i!}*x^{i} f(ni1)(x)=ani10!(n1i)!+ani1!(ni)!x1+...+an1i!(n1)!xi

对于积式 f ( i ) ( x ) f ( n − 1 − i ) ( x ) f^{(i)}(x)f^{(n-1-i)}(x) f(i)(x)f(n1i)(x)结果中,次数为 d d d的项 x d x^d xd前的系数应该是:

∑ t = 0 d a i + t ∗ ( i + t ) ! t ! ∗ a n − i − 1 + ( d − t ) ∗ ( n − i − 1 + ( d − t ) ) ! ( d − t ) ! \sum_{t = 0}^{d}a_{i+t}*\frac{(i+t)!}{t!}*a_{n-i-1+(d-t)}*\frac{(n-i-1+(d-t))!}{(d-t)!} t=0dai+tt!(i+t)!ani1+(dt)(dt)!(ni1+(dt))!

F i = a i ∗ i ! F_i = a_i * i! Fi=aii!

换种写法:

∑ t = 0 d F i + t ∗ 1 t ! ∗ F n − 1 + d − ( i + t ) ∗ 1 ( d − t ) ! \sum_{t = 0}^{d}F_{i+t}*\frac{1}{t!}*F_{n-1+d-(i+t)}*\frac{1}{(d-t)!} t=0dFi+tt!1Fn1+d(i+t)(dt)!1

对所有的积式求和得到:

∑ i = 0 n − 1 ∑ t = 0 d F i + t ∗ 1 t ! ∗ F n − 1 + d − ( i + t ) ∗ 1 ( d − t ) ! \sum_{i= 0}^{n-1}\sum_{t = 0}^{d}F_{i+t}*\frac{1}{t!}*F_{n-1+d-(i+t)}*\frac{1}{(d-t)!} i=0n1t=0dFi+tt!1Fn1+d(i+t)(dt)!1

= ∑ i = 0 n − 1 + d F i ∗ F n − 1 + d − i ∗ ∑ j = 0 d 1 j ! ( d − j ) ! =\sum^{n-1+d}_{i=0}F_{i}*F_{n-1+d-i}*\sum^{d}_{j=0}\frac{1}{j!(d-j)!} =i=0n1+dFiFn1+dij=0dj!(dj)!1

在上个式子中必须要满足 n − 1 + d − i ≤ n − 1 n-1+d-i \le n-1 n1+din1, 即, d ≤ i d \le i di ,不然 F n − 1 + d − i F_{n-1+d-i} Fn1+di将变成 0 0 0,不过对答案没有影响.

j j j的取值范围是 j : [ 0 , m i n ( d , i ) ] j:[0,min(d,i)] j:[0,min(d,i)],也就是 j : [ 0 , d ] j:[0,d] j:[0,d].

因此上个式子就是,

= ∑ i = 0 n − 1 + d F i ∗ F n − 1 + d − i ∗ 2 d d ! = 2 d d ! ∗ ∑ i = 0 n − 1 + d F i ∗ F n − 1 + d − i =\sum^{n-1+d}_{i=0}F_{i}*F_{n-1+d-i}*\frac{2^d}{d!} = \frac{2^d}{d!} *\sum^{n-1+d}_{i=0}F_{i}*F_{n-1+d-i} =i=0n1+dFiFn1+did!2d=d!2di=0n1+dFiFn1+di

对后面的部分 ∑ i = 0 n − 1 + d F i ∗ F n − 1 + d − i \sum^{n-1+d}_{i=0}F_{i}*F_{n-1+d-i} i=0n1+dFiFn1+di直接套用 N T T NTT NTT来求就可以了.

代码

#include <iostream>
#include <cstring>
#include <cstdio>

using namespace std;
#define rep(i,a,b) for(int i = a;i <= b;++i)
typedef long long LL;
const int N = 1 << 20;
const int P = 998244353;
const int G = 3;
const int NUM = 20;

LL  wn[NUM];
LL  a[N], b[N];

LL quick_mod(LL a, LL b, LL m)
{
    LL ans = 1;
    a %= m;
    while(b)
    {
        if(b & 1)
        {
            ans = ans * a % m;
            b--;
        }
        b >>= 1;
        a = a * a % m;
    }
    return ans;
}

void GetWn()
{
    for(int i = 0; i < NUM; i++)
    {
        int t = 1 << i;
        wn[i] = quick_mod(G, (P - 1) / t, P);
    }
}
void Rader(LL a[], int len)
{
    int j = len >> 1;
    for(int i = 1; i < len - 1; i++)
    {
        if(i < j) swap(a[i], a[j]);
        int k = len >> 1;
        while(j >= k)
        {
            j -= k;
            k >>= 1;
        }
        if(j < k) j += k;
    }
}

void NTT(LL a[], int len, int on)
{
    Rader(a, len);
    int id = 0;
    for(int h = 2; h <= len; h <<= 1)
    {
        id++;
        for(int j = 0; j < len; j += h)
        {
            LL w = 1;
            for(int k = j; k < j + h / 2; k++)
            {
                LL u = a[k] % P;
                LL t = w * a[k + h / 2] % P;
                a[k] = (u + t) % P;
                a[k + h / 2] = (u - t + P) % P;
                w = w * wn[id] % P;
            }
        }
    }
    if(on == -1)
    {
        for(int i = 1; i < len / 2; i++)
            swap(a[i], a[len - i]);
        LL inv = quick_mod(len, P - 2, P);
        for(int i = 0; i < len; i++)
            a[i] = a[i] * inv % P;
    }
}

void Conv(LL a[], LL b[], int n)
{
    NTT(a, n, 1);
    NTT(b, n, 1);
    for(int i = 0; i < n; i++)
        a[i] = a[i] * b[i] % P;
    NTT(a, n, -1);
}
int n;
LL Fac[N],iFac[N];
int main()
{
    GetWn();
	Fac[0] = 1;
	rep(i,1,N-1) 
		Fac[i] = Fac[i-1] * i % P;
	rep(i,0,N-1)
		iFac[i] = quick_mod(Fac[i],P-2,P);
	ios::sync_with_stdio(false);
	cin >> n;
	rep(i,0,n-1) {
		std::cin >> a[i];
		a[i] = b[i] = a[i] * Fac[i] % P;
	}
	int len = 1;
	while(len < n) len <<= 1;
    len <<= 1;
	Conv(a,b,len);
	rep(i,0,n-1) {
		std::cout << a[n-1+i] * quick_mod(2,i,P) % P * iFac[i] % P << " ";
	}
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值