快速数论变换概述(NTT)

在学习了FFT之后,我们开始学习NTT,感觉在数论题当中,NTT的应用更广,因为不用考虑精度问题,我们可以做数域更广的计算。
下面看一下FFT和NTT的区别:
FFT使用单位根作为点值,而NTT使用原根作为点值。原根在数论情况下和单位根的作用是一样的。但是很遗憾的是NTT对于模数有要求。只有在2的次幂足够大的情况下,我才能使用NTT。
code:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define mod 998244353
using namespace std;
long long a[2097253],b[2097153];
int n,m,L,l,p[2097253];

long long qui(long long a,int x){
    long long ret=1;
    while(x!=0){
        if((x&1)==1) ret=ret*a%mod;
        a=a*a%mod;
        x=x>>1;
    }
    return ret;
}

void ntt(long long *g,int type){
    for(int i=0;i<L;i++) if(i<p[i]) swap(g[i],g[p[i]]);
    for(int i=1;i<L;(i<<=1)){
        long long wn=qui(3,(mod-1)/(i<<1));
        for(int j=0;j<L;j+=(i<<1)){
            long long w=1;
            for(int k=j;k<j+i;w=w*wn%mod,k++){
                long long t=g[k+i]*w%mod;
                g[k+i]=(g[k]-t+mod)%mod;g[k]=(g[k]+t)%mod;
            }
        }
    }
    if(type==1) return;reverse(g+1,g+L);
    long long ni=qui(L,mod-2);
    for(int i=0;i<L;i++) g[i]=g[i]*ni%mod;
}

int main()
{
    scanf("%d%d",&n,&m);
    for(int i=0;i<=n;i++) scanf("%lld",&a[i]);
    for(int i=0;i<=m;i++) scanf("%lld",&b[i]);
    for(L=1;L<=n+m;l++,L=L<<1);
    for(int i=1;i<L;i++) p[i]=((p[i>>1]>>1)|((i&1)<<(l-1)));
    ntt(a,1);ntt(b,1);
    for(int i=0;i<L;i++) a[i]=a[i]*b[i]%mod;
    ntt(a,-1);
    for(int i=0;i<=n+m;i++) printf("%lld ",a[i]);
}

而重头戏其实在后面,我们还要学习多项式一家:

多项式求逆:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值