Stable-Baselines3 (SB3) 是一个基于 PyTorch 的库,提供了可靠的强化学习算法实现。它拥有简洁易用的接口,让用户能够直接使用现成的、最先进的无模型强化学习算法。
以下是一个基于强化学习和 Gym 中 mujoco
的 Ant
环境的案例,使用了 Proximal Policy Optimization (PPO) 算法,这是一个适用于连续状态和动作空间的强化学习算法。
环境准备
安装依赖
确保安装以下库:
pip install gym[mujoco] stable-baselines3 shimmy
gym[mujoco]
: 提供 MuJoCo 环境支持。stable-baselines3
: 包含多种强化学习算法的库,包括 PPO。shimmy
: stable-baselines3需要用到shimmy。
完整代码
实现 PPO 与 Ant 环境交互
import gym
from stable_baselines3 import PPO
import imageio
# 创建 Ant 环境l
env = gym.make("Ant-v4")
# 使用 Stable-Baselines3 的 PPO 算法
model = PPO(
"MlpPolicy", # 多层感知机作为策略网络
env,
verbose=1,
learning_rate=0.0003,
n_steps=2048,
batch_size=64,
n_epochs=10,
gamma=0.99,
gae_lambda=0.95,
)
# 训练模型, total_timesteps自行调整
model.learn(total_timesteps=100000)
# 保存模型
model.save("ppo_ant")
# 加载模型
model = PPO.load("ppo_ant")
# 创建测试环境
env = gym.make("Ant-v4", render_mode="rgb_array")
# 存储每帧图像
frames = []
# 测试模型
obs, info = env.reset()
for _ in range(1000):
env.render()
frames.append(env.render()) # 捕获帧
action, _ = model.predict(obs)
next_state, reward, terminated, truncated, info = env.step(action)
if terminated or truncated:
obs, info = env.reset()
env.close()
# 保存为视频
imageio.mimsave("./ppo_ant_video.mp4", frames, fps=30)
代码解析
-
创建 Ant 环境
- 使用
gym.make("Ant-v4")
创建Ant
环境。
- 使用
-
使用 PPO 算法
- 策略网络:使用
MlpPolicy
(多层感知机策略)。 - 超参数设置:
learning_rate
:学习率,控制更新步长。n_steps
:每次更新前的时间步数。batch_size
:训练时的批量大小。n_epochs
:每次更新的训练轮数。gamma
:折扣因子,权衡短期与长期奖励。gae_lambda
:广义优势估计(GAE)的参数,用于稳定学习。
- 策略网络:使用
-
训练模型
- 使用
model.learn()
函数训练模型。
- 使用
-
测试模型
- 使用
model.predict(obs)
获得动作决策。 - 在环境中运行训练好的策略,通过渲染观察蚂蚁机器人的运动行为。
- 使用
运行结果如下
若训练轮次较少,蚂蚁会翻倒
ppo训练轮数较少的情况
训练100000轮后,蚂蚁不再会翻倒
ppo训练轮数较多的情况
关键点与挑战
-
动作控制:
- 机器人通过连续动作控制腿部关节,需要策略学习如何协调运动。
- 强化学习算法需要在高维动作空间中找到最优策略。
-
奖励函数设计:
- 环境自带的奖励函数主要基于蚂蚁的前进速度和能量效率。
- 奖励设计需平衡速度、稳定性和能量消耗。
-
计算复杂度:
- 高维状态和动作空间会增加学习的难度,需要更长时间训练。
扩展方向
-
改进奖励函数:
- 自定义奖励函数,例如鼓励更多的能量效率或更复杂的步态。
-
多任务学习:
- 在
Ant
环境中添加不同目标,例如绕过障碍或追踪目标点。
- 在
-
模型性能对比:
- 试验其他强化学习算法(如 DDPG、SAC、TD3),对比训练速度与性能。
-
迁移学习:
- 将训练好的蚂蚁策略应用于其他机器人环境,测试泛化能力。
总结
经过训练,蚂蚁机器人能够学会如何行走并避免翻倒。最终表现取决于训练时间和算法参数设置。渲染结果可以显示蚂蚁运动的动画效果。
笔者水平有限,若有不对的地方欢迎评论指正!