自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2)
  • 资源 (11)
  • 收藏
  • 关注

原创 Git 简单配置与使用(一)

git配置与简单使用 1、配置 git config --global user.name XXX git config --global user.email XXXX@XX.com 配置ssh秘钥 ssh-keygen -t rsa 后加三次回车 复制.ssh中的id_rsa.pub文件中的秘钥至github中settings–>Deploy keys–>Add deploy k...

2019-08-25 15:06:02 85

原创 单变量线性回归

吴恩达机器学习课程笔记 目录 定义 代价函数 梯度下降 参考文献 定义 单变量线性回归属于线性回归算法的一种,由于只含有一个特征/输入变量,因此称该模型为单变量线性回归模型。 数学表达形式: 代价函数 建模误差:真实值与模型预测值之间的差距。 为了提高模型的训练准确率,应使得代价函数最小,代价函数为: 其中: Hypothesis(假设): ...

2019-03-11 21:33:48 188

复习 精简.pdf

中国科学院大学 人工智能学院 《深度学习》课程笔记整理,主要是精简的提取了知识点,内容不多但考试覆盖率较高,手写版,字不太好看,但不影响观看,需要的自取。整理比较辛苦,要是认可请给好评。

2019-06-08

国科大 王亮老师 深度学习 笔记

中国科学院大学 人工智能学院 《深度学习》课程笔记整理,主要是提取了一下PPT,内容还是挺多的,手写版,字不太好看,但不影响观看,其中包含了所有2019年的考点,需要的自取。整理比较辛苦,要是认可请给好评。

2019-06-08

Mask R-CNN.pptx

阅读Mask Rcnn后整理的阅读ppt,英文版的内容较少。

2019-06-08

离散Hopfield神经网络的分类——高校科研能力评价

离散Hopfield神经网络的分类——高校科研能力评价matlab代码

2017-12-27

BP神经网络的数据分类-语音特征信号分类

利用BP神经网络进行数据分类,以语音特征信号分类为例Matlab实验。。。。。。。。。。。。。。。。

2017-12-27

单层竞争神经网络的数据分类—患者癌症发病预测

利用单层竞争神经网络来进行数据分类,以患者癌症发病预测为例,通过Matlab进行实验。

2017-12-27

智能推荐歌曲系统代码

利用机器学习进行歌曲推荐。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。

2017-12-24

神经网络入门

提纲 • 神经网络的生物动机 • 何时可以考虑使用神经网络 • 感知机 • Sigmoid神经元 • 前馈神经网络 • 反向传播算法 • 神经网络杂谈 • 神经网络的应用—词向量之word2vec • 参考资料及推荐阅读

2017-12-20

卷积神经网络 CNN 从入门到精通

卷积神经网络 CNN 是 Deep Learning 的一个重要算法,在很多应用上表现出卓 越的效果,[1]中对比多重算法在文档字符识别的效果,结论是 CNN 优于其他所有的算 法。CNN 在手写体识别取得最好的效果,[2]将 CNN 应用在基于人脸的性别识别,效 果也非常不错。前段时间我用 BP 神经网络对手机拍照图片的数字进行识别,效果还算 不错,接近 98%,但在汉字识别上表现不佳,于是想试试卷积神经网络。

2017-12-20

机器学习个人笔记完整版v4.21

斯坦福大学 2014 机器学习教程中文笔记:本课程ᨀ供了一个广泛的介绍机器学习、数据挖掘、统计模式识别的课程。主题包括: (一)监督学习(参数/非参数算法,支持向量机,核函数,神经网络)。(二)无监督学习 (聚类,降维,推荐系统,深入学习推荐)。(三)在机器学习的最佳实践(偏差/方差理 论;在机器学习和人工智能创新过程)。本课程还将使用大量的案例研究,您还将学习如何 运用学习算法构建智能机器人(感知,控制),文本的理解(Web 搜索,反垃圾邮件),计 算机视觉,医疗信息,音频,数据挖掘,和其他领域。

2017-12-20

机器学习实战

机器学习是人工智能研究领域中一个极其重要的研究方向,在现今的大数据时代背景下,捕获数据并从中萃取有价值的信息或模式,成为各行业求生存、谋发展的决定性手段,这使得这一过去为分析师和数学家所专属的研究领域越来越为人们所瞩目。, 本书第一部分主要介绍机器学习基础,以及如何利用算法进行分类,并逐步介绍了多种经典的监督学习算法,如k近邻算法、朴素贝叶斯算法、Logistic回归算法、支持向量机、AdaBoost集成方法、基于树的回归算法和分类回归树(CART)算法等。第三部分则重点介绍无监督学习及其一些主要算法:k均值聚类算法、Apriori算法、FP-Growth算法。第四部分介绍了机器学习算法的一些附属工具。, 全书通过精心编排的实例,切入日常工作任务,摒弃学术化语言,利用高效的可复用Python代码来阐释如何处理统计数据,进行数据分析及可视化。通过各种实例,读者可从中学会机器学习的核心算法,并能将其运用于一些策略性任务中,如分类、预测、推荐。另外,还可用它们来实现一些更高级的功能,如汇总和简化等。

2017-12-20

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除