单变量线性回归

本文主要介绍了单变量线性回归,包括其数学表达形式、代价函数的定义及梯度下降法用于优化模型参数的过程。通过梯度下降,逐步找到使代价函数最小化的参数值,从而提高模型预测准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

吴恩达机器学习课程笔记

目录

定义

代价函数

梯度下降

参考文献


定义

单变量线性回归属于线性回归算法的一种,由于只含有一个特征/输入变量,因此称该模型为单变量线性回归模型。

数学表达形式:\fn_phv h_\theta=\theta_0+\theta_1x

代价函数

建模误差:真实值与模型预测值之间的差距。

为了提高模型的训练准确率,应使得代价函数最小,代价函数为:J(\theta_{0},\theta_{1}) = \frac{1}{2m}\sum_{i=1}^{m}{(h_\theta(x^{(i)})-y^{(i)})}^2

其中:

        Hypothesis(假设):\fn_phv h_\theta=\theta_0+\theta_1x

        参数:{\theta_{0}},{\theta_{1}}

        代价函数:J(\theta_{0},\theta_{1}) = \frac{1}{2m}\sum_{i=1}^{m}{(h_\theta(x^{(i)})-y^{(i)})}^2

        目标:\min \limits_{\theta_{0},\theta_{1}}J(\theta_0,\theta_1 )

梯度下降

思想:开始时可随机选择一组参数 (\theta_0,\theta_1) , 计算其代价函数,然后寻找下一个使得代价函数下降最多的参数组合,直到找到一个局部最优值(Local Minimum),由于选择的初始参数不同,最终得到的局部最小值也可能不同。

梯度下降算法:

                        repeat until convergence{

                        \theta := \theta_j -\alpha \frac{\partial }{\partial \theta_{j}}{J(\theta_0,\theta_1)}             ( for j = 0  and  j = 1 )

                        }

使用梯度下降算法求解上述单变量线性回归模型的 \min \limits_{\theta_{0},\theta_{1}}J(\theta_0,\theta_1 )  :

对代价函数进行求导,得 

                                         \frac{\partial }{\partial \theta_j}{J(\theta_{0},\theta_{1}) = \frac{1}{2m}\sum_{i=1}^{m}{(h_\theta(x^{(i)})-y^{(i)})}^2}

当 j=0 时 , \frac{\partial }{\partial \theta_0}{J(\theta_{0},\theta_{1}) = \frac{1}{m}\sum_{i=1}^{m}{(h_\theta(x^{(i)})-y^{(i)})}}

当 j=1 时,\frac{\partial }{\partial \theta_1}{J(\theta_{0},\theta_{1}) = \frac{1}{m}\sum_{i=1}^{m}({(h_\theta(x^{(i)})-y^{(i)})}}\cdot x^{(i)})

则可将算法改写成:

Repeat{

\theta_0 := \theta_0 -\alpha\frac{1}{m} \sum_{i=1}^{m}(h_\theta(x^{(i)})-y^{(i)})

\theta_1 := \theta_1 -\alpha\frac{1}{m} \sum_{i=1}^{m}{((h_\theta(x^{(i)})-y^{(i)})\cdot x^{(i)})}

}

参考文献

[1].https://github.com/learning511/Stanford-Machine-Learning-camp

[2].https://github.com/learning511/Stanford-Machine-Learning-camp/blob/master/Course/lecture-notes/lecture2.pdf

[3].https://www.coursera.org/learn/machine-learning

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值