吴恩达机器学习课程笔记
目录
定义
单变量线性回归属于线性回归算法的一种,由于只含有一个特征/输入变量,因此称该模型为单变量线性回归模型。
数学表达形式:
代价函数
建模误差:真实值与模型预测值之间的差距。
为了提高模型的训练准确率,应使得代价函数最小,代价函数为:
其中:
Hypothesis(假设):
参数:
代价函数:
目标:
梯度下降
思想:开始时可随机选择一组参数 , 计算其代价函数,然后寻找下一个使得代价函数下降最多的参数组合,直到找到一个局部最优值(Local Minimum),由于选择的初始参数不同,最终得到的局部最小值也可能不同。
梯度下降算法:
repeat until convergence{
( for j = 0 and j = 1 )
}
使用梯度下降算法求解上述单变量线性回归模型的 :
对代价函数进行求导,得
当 j=0 时 ,
当 j=1 时,
则可将算法改写成:
Repeat{
}
参考文献
[1].https://github.com/learning511/Stanford-Machine-Learning-camp