单变量线性回归

本文主要介绍了单变量线性回归,包括其数学表达形式、代价函数的定义及梯度下降法用于优化模型参数的过程。通过梯度下降,逐步找到使代价函数最小化的参数值,从而提高模型预测准确性。
摘要由CSDN通过智能技术生成

吴恩达机器学习课程笔记

目录

定义

代价函数

梯度下降

参考文献


定义

单变量线性回归属于线性回归算法的一种,由于只含有一个特征/输入变量,因此称该模型为单变量线性回归模型。

数学表达形式:\fn_phv h_\theta=\theta_0+\theta_1x

代价函数

建模误差:真实值与模型预测值之间的差距。

为了提高模型的训练准确率,应使得代价函数最小,代价函数为:J(\theta_{0},\theta_{1}) = \frac{1}{2m}\sum_{i=1}^{m}{(h_\theta(x^{(i)})-y^{(i)})}^2

其中:

        Hypothesis(假设):

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值