SpringBoot整合Flink CDC实时同步postgresql变更数据,基于WAL日志

一、前言

在工作中经常会遇到要实时获取数据库(postgresql、mysql等)的变更数据,主要体现数据的实时性;mysql数据库有canal工具实现很简单,但是基于postgresql数据库获取实时数据就比较复杂,之前已经写过一篇获取postgresql数据库实时数据的文章,如下:

【技术实现】java实时同步postgresql变更数据,基于WAL日志

但是,之前的实现方式比较繁琐,不利于维护,所有本文整合Flink CDC通过一个比较简单的方式实现;

二、技术介绍(Flink CDC)

1、Flink CDC

Flink CDC(Change Data Capture)是一个基于Apache Flink构建的开源数据变更捕获(CDC)框架。其核心功能是从各种关系型数据库(如MySQL、PostgreSQL、Oracle等)中捕获数据变更(如增删改操作),并将这些变更以流的形式提供给Flink等流处理引擎进行处理;
1)CDC(Change Data Capture):数据变更捕获的简称,用于监测并捕获数据库的变动,然后将这些变更按照发生顺序捕获,并写入到目标存储系统(如数据仓库、数据湖、消息队列等)。
2)Flink CDC:基于Flink的CDC实现,将CDC技术与Flink流处理引擎相结合,实现数据的实时捕获、处理和传输。

2、Postgres CDC

1)Postgres CDC(Change Data Capture)连接器是用于从PostgreSQL数据库捕获数据变更(如增删改操作)并将其以流的形式提供给数据处理引擎(如Flink)的组件;
2)PostgreSQL版本:Postgres CDC连接器通常支持PostgreSQL的多个版本,具体版本可能因连接器版本不同而有所差异。常见的支持版本包括9.6、10、11、12、13、14等;

三、准备工作

1、安装postgresql数据库,并创建库和测试使用的表,这里不再列举详细步骤;
在这里插入图片描述
2、修改postgresql数据库配置,通过wal日志监听变更数据

修改postgresql.conf文件,重启服务
wal_level=logical

3、springboot关键maven依赖

<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-connector-base</artifactId>
    <version>1.19.0</version>
</dependency>
<dependency>
    <groupId>com.ververica</groupId>
    <artifactId>flink-connector-postgres-cdc</artifactId>
    <version>3.0.1</version>
</dependency>

注:其它依赖不在列举,可以通过获取源码查看

四、代码示例

InitAction02.java

package com.sk.proxytest.init;

import com.ververica.cdc.connectors.base.source.jdbc.JdbcIncrementalSource;
import com.ververica.cdc.connectors.postgres.source.PostgresSourceBuilder;
import com.ververica.cdc.debezium.DebeziumDeserializationSchema;
import com.ververica.cdc.debezium.JsonDebeziumDeserializationSchema;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.springframework.context.annotation.Configuration;
import javax.annotation.PostConstruct;

@Configuration
public class InitAction02 {

    @PostConstruct
    public void run() throws Exception {
        DebeziumDeserializationSchema<String> deserializer =
                new JsonDebeziumDeserializationSchema();

        JdbcIncrementalSource<String> postgresIncrementalSource =
                PostgresSourceBuilder.PostgresIncrementalSource.<String>builder()
                        .hostname("127.0.0.1")
                        .port(5432)
                        .database("postgres")
                        .schemaList("public")
                        .tableList("public.student")
                        .username("postgres")
                        .password("password")
                        .slotName("flink")
                        .decodingPluginName("pgoutput") // use pgoutput for PostgreSQL 10+
                        .deserializer(deserializer)
                        .includeSchemaChanges(true) // output the schema changes as well
                        .splitSize(2) // the split size of each snapshot split
                        .build();

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.enableCheckpointing(3000);
        env.fromSource(
                postgresIncrementalSource,
                WatermarkStrategy.noWatermarks(),
                "PostgresParallelSource")
                .setParallelism(2).addSink(new CustomSink());
                //.print();

        env.execute("Output Postgres Snapshot");
    }

}

CustomSink.java

package com.sk.proxytest.init;

import lombok.extern.log4j.Log4j2;
import org.apache.flink.streaming.api.functions.sink.RichSinkFunction;

@Log4j2
public class CustomSink extends RichSinkFunction<String> {
    @Override
    public void invoke(String value, Context context) throws Exception {
        log.info("============数据发生变化:{}", value);
    }
}

执行结果:

1)新增数据
在这里插入图片描述

2)变更数据输出

2024-07-31T00:00:15,761 INFO  [debezium-reader-0] io.debezium.util.Threads$3: Creating thread debezium-postgresconnector-postgres_cdc_source-keep-alive
2024-07-31T00:00:15,761 INFO  [debezium-reader-0] io.debezium.connector.postgresql.PostgresStreamingChangeEventSource: Processing messages
2024-07-31T00:00:15,762 INFO  [debezium-reader-0] io.debezium.connector.postgresql.connection.WalPositionLocator: Message with LSN 'LSN{0/3588018}' arrived, switching off the filtering
2024-07-31T00:00:16,678 INFO  [Sink: Unnamed (1/4)#0] com.sk.proxytest.init.CustomSink: ============数据发生变化:{"before":null,"after":{"id":8,"name":"8","age":8,"remark":"8"},"source":{"version":"1.9.7.Final","connector":"postgresql","name":"postgres_cdc_source","ts_ms":1722355215252,"snapshot":"false","db":"postgres","sequence":"[null,\"56131608\"]","schema":"public","table":"student","txId":932,"lsn":56131608,"xmin":null},"op":"c","ts_ms":1722355216336,"transaction":null}

五、总结

Postgres CDC 连接器是一个 Flink Source 连接器,它将首先读取数据库快照,然后继续读取二进制日志,即使发生故障,也会进行一次处理;

Postgres CDC 连接器

👇🏻 👇🏻 👇🏻注:文章源代码关注下面公众号获取👇🏻 👇🏻 👇🏻

  • 23
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
在多台服务器之间协调工作的场景下,可以使用 Apache Flink 提供的一些可扩展性和容错性机制来实现协调。下面是一些可能的解决方案: 1. 高可用模式:使用 Apache Flink 的高可用模式来确保多台服务器之间的故障转移和容错性。这可以通过将 Flink 集群配置为高可用模式,并在服务器之间共享状态来实现。如果一台服务器失败,那么其他服务器会接管它的任务。 2. 分布式快照:利用 Flink 的分布式快照机制,在服务器之间定期创建和恢复快照。这可以保证在发生故障时,能够从最后一个快照的状态中恢复,并继续处理数据。 3. Flink CDC connectors 与 Kafka 的结合:如果你使用的是 Flink CDC connectors 与 Kafka 进行数据同步,你可以使用 Kafka 的分区机制来实现多台服务器间的协调。每个 Flink 实例可以消费 Kafka 的一个或多个分区,从而实现数据的并行处理和协调。 4. ZooKeeper 或其他分布式协调工具:使用 ZooKeeper 或类似的分布式协调工具来管理和协调多台服务器之间的任务分配和状态同步。这可以确保每个服务器都知道其他服务器的状态,并根据需要进行任务重分配。 需要根据具体情况选择合适的方案,并进行相应的配置和开发。以上只是一些可能的解决方案,具体的实现方式还需要根据你的系统架构和需求进行进一步的调研和设计。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Dylan~~~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值