正态分布
X ∼ N ( μ , σ ) X\sim N(\mu ,\sigma ) X∼N(μ,σ)
f X ( x ) = 1 2 π σ e − ( x − μ ) 2 / 2 σ 2 f_{X}(x)=\frac{1}{\sqrt{2\pi}\sigma }e^{-(x-\mu )^{2}/2\sigma ^{2}} fX(x)=2πσ1e−(x−μ)2/2σ2
一、标准正态分布
当 μ = 0 , σ = 1 \mu =0, \sigma =1 μ=0,σ=1时,服从标准正态分布,标准正态分布概率密度函数:
f X ( x ) = 1 2 π e − x 2 / 2 f_{X}(x)=\frac{1}{\sqrt{2\pi }}e^{-x^{2}/2} fX(x)=2π1e−x2/2
标准正态分布图像:

合格率P:
P ( − x ≤

本文介绍了正态分布的概念,包括标准正态分布和非标准正态分布。标准正态分布中,当μ=0,σ=1时,概率密度函数为fX(x)=2π1e−x2/2。非标准正态分布的概率密度函数为fX(x)=2πσ1e−(x−μ)2/2σ2。讨论了合格率P的计算,并通过换元法将非标准正态分布转换为标准正态分布进行查表计算。此外,强调了σ和z值对于合格率的影响。"
88990859,7597478,Java Graphics 实现图形绘制,"['Java图形编程', 'Java基础', '面向对象编程']
最低0.47元/天 解锁文章
1559

被折叠的 条评论
为什么被折叠?



