题目描述:
定义栈的数据结构,请在该类型中实现一个能够得到栈的最小元素的min函数。在该栈中,调用min,push及pop的时间复杂度都是O(1).
分析:
看到这个问题,我们的第一反应可能是每次压入一个新元素进栈时,将栈里的所有元素排序,让最小的元素位于栈顶,这样就能在O(1)时间得到最小元素了。但这种思路不能保证最后压入的元素能够最先出栈,因此这个数据结构已经不是栈了。
我们接着想到在栈里添加一个成员变量存放最小的元素。每次压入一个新元素进栈的时候,如果该元素比当前最小的元素还要小,则更新最小元素。面试官听到这种思路之后就会问:如果当前最小的元素被弹出栈了,如何得到下一个最小的元素呢?
分析到这里我们发现仅仅添加一个成员变量存放最小元素是不够的,也就是说当最小元素弹出栈的时候,我们希望能够得到次小元素。因此在压入这个最小元素之前,我们要把次小元素保存起来。
是不是可以把每次的最小元素都保存起来,放在另外一个辅助栈里呢?我们不妨举几个例子来分析一下把元素压入或者弹出栈的过程。
代码实现:
import java.util.Stack;
/**
* 自定义栈的数据结构 :请在该类型中实现一个能够得到栈的最小值的min函数。在该栈中调用min、push、pop的时间复杂度为o(1)
*/
public class CustomStack {
//数据栈
Stack<Integer> dataStack = new Stack<>();
//辅助栈
Stack<Integer> minStack = new Stack<>();
int minValue = 0;
//进栈
public void push(int node) {
dataStack.push(node);
if(minStack.isEmpty()){
minValue = node;
}else{
if(minValue > node){
minValue = node;
}
}
minStack.push(minValue);
}
//出栈
public void pop() {
if(!dataStack.isEmpty() && !minStack.isEmpty()){
dataStack.pop();
minStack.pop();
if(!minStack.isEmpty()){
minValue = minStack.peek();
}else{
minValue = 0;
}
}
}
//取栈顶值
public int top() {
if(!dataStack.isEmpty()){
return dataStack.peek();
}
return 0;
}
public int min() {
return minValue;
}
}