题目描述:
输入两个整数序列,第一个序列表示栈的压入顺序,请判断第二个序列是否为该栈的弹出顺序。假设压入栈的所有数字均不相等。例如序列1,2,3,4,5是某栈的压栈序列,序列,4,5,3,2,1是该压栈序列对应的一个弹出序列,但4,3,5,1,2就不可能是该压栈序列的弹出序列。
分析:
解决这个问题很直观的想法就是建立一个辅助栈,把输入的第一个序列中的数字依次压入该辅助栈,并按照第二个序列的顺序依次从该栈中弹出数字。
以弹出序列4,5,3,2,1为例分析压栈和弹出的过程。第一个希望被弹出的数字是4,因此4需要先压入到辅助栈里面。压入栈的顺序由压栈序列确定了,也就是在把4压入进栈之前,数字1,2,3都需要先压入到栈里面。此时栈里面包含4个数字,分别是1,2,3,4,其中4位于栈顶。把4弹出栈后,剩下的三个数字是1,2,3。接下来希望被弹出的数字是5,由于它不是栈顶的数字,因此我们接着在第一个序列中把4以后的数字压入辅助栈中,直到压入了数字5。这个时候5位于栈顶,就可以被弹出来了。接下来希望被弹出的三个数字依次是3,2,1.由于每次操作前他们都位于栈顶,因此直接弹出即可。下表描述了本例中入栈和出栈的过程。
总结上述入栈、出栈的过程,我们可以找到判断一个序列是不是栈的弹出顺序的规律:如果下一个弹出的数字刚好是栈顶数字,那么直接弹出。如果下一个弹出的数字不在栈顶,我们把压栈序列中还没有入栈的数字压入辅助栈,直到把下一个需要弹出的数字压入栈顶为止。如果所有的数字都压入栈了仍没有找到下一个弹出的数字,那么该序列不可能是一个弹出序列。
代码如下:
import java.util.Stack;
/**
* 栈的压入、弹出序列
*/
public class StackSequence {
public boolean IsPopOrder(int [] pushA,int [] popA){
Stack<Integer> stack = new Stack<>();
/**
* 参数校验
*/
if((pushA == null && popA == null) || (pushA.length == 0 && popA.length == 0)){
return true;
}
if(pushA == null || popA == null || pushA.length == 0 || popA.length == 0){
return false;
}
if(pushA.length != popA.length){
return false;
}
int j =0;
for(int i = 0; i < pushA.length; i++){
stack.push(pushA[i]);
while(!stack.isEmpty() && stack.peek() == popA[j]){
stack.pop();
j++;
}
}
if(stack.isEmpty()){
return true;
}else{
return false;
}
}
public static void main(String[] args) {
StackSequence test = new StackSequence();
int [] pushA = {1,2,3,4,5};
int [] popA = {4,3,5,1,2};
boolean result = test.IsPopOrder(pushA, popA);
System.out.println(result);
}
}