数据挖掘2021-4-27课堂笔记

本文探讨了数据挖掘中的监督学习和无监督学习,包括分类与数值预测问题。决策树归纳法被提及,其通过信息增益、熵和基尼指数进行特征选择。文章还讨论了过拟合、树修剪以及朴素贝叶斯分类器的优势和局限。此外,提到了如何使用贝叶斯信念网络解决变量依赖问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据挖掘

监督学习(分类)

无监督学习(聚类)

prediction problems:Classification vs. Numeric Prediction

测试集的数据,与训练集应该严格分开。 假如考试的题之前作业都见过,就无法检测是否真正掌握

Decision Tree Induction(决策树归纳法)

直观,容易理解
在这里插入图片描述

信息增益,熵

熵高,高不确定性
熵低,低不确定性

连续值:<20, 20~30, 30 ~40, >40

Gain Ratio

Gini Index Used in CART

在这里插入图片描述

Overfitting 与 Tree Pruning
有一些branches反应的是anomalies或者noise或者outliers
在这里插入图片描述
黑线比绿线好

对overfitting的两种approaches

Prepruning:
在这里插入图片描述
threshold难选

Postpruning:

在这里插入图片描述
用另一组数据来剪枝(用的更多)

决策树的优点:

  1. 学习速度快
  2. 可以转化成简单易理解的分类条件
  3. 容易用SQL实现
  4. 可接受的分类准确率

Bayes Classification Methods

在这里插入图片描述
朴素贝叶斯分类器的一个示例:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
朴素贝叶斯的优点:
容易实现,结果优秀
缺点:变量往往不是独立的
在这里插入图片描述
可以用贝叶斯 Bayesian Belief Networks来部分解决上述问题

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

内容概要:本文详细介绍了施耐德M580系列PLC的存储结构、系统硬件架构、上电写入程序及CPU冗余特性。在存储结构方面,涵盖拓扑寻址、Device DDT远程寻址以及寄存器寻址三种方式,详细解释了不同类型的寻址方法及其应用场景。系统硬件架构部分,阐述了最小系统的构建要素,包括CPU、机架和模块的选择与配置,并介绍了常见的系统拓扑结构,如简单的机架间拓扑和远程子站以太网菊花链等。上电写入程序环节,说明了通过USB和以太网两种接口进行程序下载的具体步骤,特别是针对初次下载时IP地址的设置方法。最后,CPU冗余部分重点描述了热备功能的实现机制,包括IP通讯地址配置和热备拓扑结构。 适合人群:从事工业自动化领域工作的技术人员,特别是对PLC编程及系统集成有一定了解的工程师。 使用场景及目标:①帮助工程师理解施耐德M580系列PLC的寻址机制,以便更好地进行模块配置和编程;②指导工程师完成最小系统的搭建,优化系统拓扑结构的设计;③提供详细的上电写入程序指南,确保程序下载顺利进行;④解释CPU冗余的实现方式,提高系统的稳定性和可靠性。 其他说明:文中还涉及一些特殊模块的功能介绍,如定时器事件和Modbus串口通讯模块,这些内容有助于用户深入了解M580系列PLC的高级应用。此外,附录部分提供了远程子站和热备冗余系统的实物图片,便于用户直观理解相关概念。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值