数据挖掘2021-4-27课堂笔记

本文探讨了数据挖掘中的监督学习和无监督学习,包括分类与数值预测问题。决策树归纳法被提及,其通过信息增益、熵和基尼指数进行特征选择。文章还讨论了过拟合、树修剪以及朴素贝叶斯分类器的优势和局限。此外,提到了如何使用贝叶斯信念网络解决变量依赖问题。
摘要由CSDN通过智能技术生成

数据挖掘

监督学习(分类)

无监督学习(聚类)

prediction problems:Classification vs. Numeric Prediction

测试集的数据,与训练集应该严格分开。 假如考试的题之前作业都见过,就无法检测是否真正掌握

Decision Tree Induction(决策树归纳法)

直观,容易理解
在这里插入图片描述

信息增益,熵

熵高,高不确定性
熵低,低不确定性

连续值:<20, 20~30, 30 ~40, >40

Gain Ratio

Gini Index Used in CART

在这里插入图片描述

Overfitting 与 Tree Pruning
有一些branches反应的是anomalies或者noise或者outliers
在这里插入图片描述
黑线比绿线好

对overfitting的两种approaches

Prepruning:
在这里插入图片描述
threshold难选

Postpruning:

在这里插入图片描述
用另一组数据来剪枝(用的更多)

决策树的优点:

  1. 学习速度快
  2. 可以转化成简单易理解的分类条件
  3. 容易用SQL实现
  4. 可接受的分类准确率

Bayes Classification Methods

在这里插入图片描述
朴素贝叶斯分类器的一个示例:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
朴素贝叶斯的优点:
容易实现,结果优秀
缺点:变量往往不是独立的
在这里插入图片描述
可以用贝叶斯 Bayesian Belief Networks来部分解决上述问题

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值