Python 语言介绍 及 相关开发环境安装配置

1 Python语言的基本概念
Python 是一种解释性语言。
Python 是一种极少数能兼具简单与功能强大的编程语言。你将惊异于发现你正在使用的这门编程语言是如此简单,它专注于如何解决问题,而非拘泥于语法与结构。
官方对 Python 的介绍如下:
Python 是一款易于学习且功能强大的编程语言。 它具有高效率的数据结构,能够简单又有效地实现面向对象编程。Python 简洁的语法与动态输入之特性,加之其解释性语言的本质,使得它成为一种在多种领域与绝大多数平台都能进行脚本编写与应用快速开发工作的理想语言

Python 的创造者吉多·范罗苏姆(Guido van Rossum)。之所以选中Python(大蟒蛇的意思)作为该编程语言的名字,是取自英国20世纪70年代首播的电视喜剧《蒙提.派森的飞行马戏团》(Monty Python’s Flying Circus)。
2 Python的特点
2.1 优点
1.简单:Python是一种代表简单主义思想的语言。阅读一个良好的Python程序就感觉像是在读英语一样。它使你能够专注于解决问题而不是去搞明白语言本身。
2.易学:Python极其容易上手,因为Python有极其简单的说明文档。
3.规范的代码:Python采用强制缩进的方式使得代码具有较好可读性。而Python语言写的程序不需要编译成二进制代码。
4.免费、开源:Python是FLOSS(自由/开放源码软件)之一。使用者可以自由地发布这个软件的拷贝、阅读它的源代码、对它做改动、把它的一部分用于新的自由软件中。FLOSS是基于一个团体分享知识的概念。
5.可移植性:由于它的开源本质,Python已经被移植在许多平台上(经过改动使它能够工作在不同平台上)。这些平台包括Linux、Windows、FreeBSD、Macintosh、Solaris、OS/2、Amiga、AROS、AS/400、BeOS、OS/390、z/OS、Palm OS、QNX、VMS、Psion、Acom RISC OS、VxWorks、PlayStation、Sharp Zaurus、Windows CE、PocketPC、Symbian以及Google基于linux开发的android平台。
6.可扩展性:如果需要一段关键代码运行得更快或者希望某些算法不公开,可以部分程序用C或C++编写,然后在Python程序中使用它们。
7.可嵌入性:可以把Python嵌入C/C++程序,从而向程序用户提供脚本功能。
8.丰富的库:Python标准库确实很庞大。它可以帮助处理各种工作,包括正则表达式、文档生成、单元测试、线程、数据库、网页浏览器、CGI、FTP、电子邮件、XML、XML-RPC、HTML、WAV文件、密码系统、GUI(图形用户界面)、Tk和其他与系统有关的操作。这被称作Python的“功能齐全”理念。除了标准库以外,还有许多其他高质量的库,如wxPython、Twisted和Python图像库等等。

2.2 缺点
1.运行速度慢:这里是指与C和C++相比。因为Python是解释型语言,你的代码在执行时会一行一行地翻译成CPU能理解的机器码,这个翻译过程非常耗时,所以很慢。而C程序是运行前直接编译成CPU能执行的机器码,所以非常快。
2.源代码加密困难:既是优点也是缺点,python的开源性使Python语言不能加密。不像编译型语言的源程序会被编译成目标程序,因此对源代码加密比较困难。
3.构架选择太多:(没有像 C# 这样的官方 .net 构架,也没有像 ruby 由于历史较短,构架开发的相对集中。Ruby on Rails 构架开发中小型web程序天下无敌)。不过这也从另一个侧面说明,python比较优秀,吸引的人才多,项目也多。

3 Python的发展及应用
3.1 Python的发展
如果你听说过TIOBE排行榜,你就能知道编程语言的大致流行程度。

从排行榜我们可以发现Python已然成为了十分流行的语言。许多大型网站就是用Python开发的,例如YouTube、Instagram,还有国内的豆瓣。很多大公司,包括Google、Yahoo等,甚至NASA(美国航空航天局)都大量地使用Python。

3.2 Python的应用
1.常规软件开发
Python支持函数式编程和OOP面向对象编程,能够承担任何种类软件的开发工作,因此常规的软件开发、脚本编写、网络编程等都属于标配能力。
2.科学计算
随着NumPy,SciPy,Matplotlib,Enthoughtlibrarys等众多程序库的开发,Python越来越适合于做科学计算、绘制高质量的2D和3D图像。和科学计算领域最流行的商业软Matlab相比,Python是一门通用的程序设计语言,比Matlab所采用的脚本语言的应用范围更泛,有更多的程序库的支持。虽然Matlab中的许多高级功能和toolbox目前还是无法替代的,不过在日常的科研开发之中仍然有很多的工作是可以用Python代劳的。
3.自动化运维
这几乎是Python应用的自留地,作为运维工程师首选的编程语言,Python在自动化运维方面已经深入人心,比如Saltstack和Ansible都是大名鼎鼎的自动化平台。
4.云计算
开源云计算解决方案OpenStack就是基于Python开发的,搞云计算的同学都懂的。
5.WEB开发
基于Python的Web开发框架不要太多,比如耳熟能详的Django,还有Tornado,Flask。其中的Python+Django架构,应用范围非常广,开发速度非常快,学习门槛也很低,能够帮助你快速的搭建起可用的WEB服务。
6.网络爬虫
也称网络蜘蛛,是大数据行业获取数据的核心工具。没有网络爬虫自动地、不分昼夜地、高智能地在互联网上爬取免费的数据,那些大数据相关的公司恐怕要少四分之三。能够编写网络爬虫的编程语言有不少,但Python绝对是其中的主流之一,其Scripy爬虫框架应用非常广泛。
7.数据分析
在大量数据的基础上,结合科学计算、机器学习等技术,对数据进行清洗、去重、规格化和针对性的分析是大数据行业的基石。Python是数据分析的主流语言之一。
8.人工智能
Python在人工智能大范畴领域内的机器学习、神经网络、深度学习等方面都是主流的编程语言,得到广泛的支持和应用。

4 Python之禅
在python编辑器中输入import this

The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren’t special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you’re Dutch.
Now is better than never.
Although never is often better than right now.
If the implementation is hard to explain, it’s a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea – let’s do more of those!
译文:
Python之禅

优美胜于丑陋(Python 以编写优美的代码为目标)
明了胜于晦涩(优美的代码应当是明了的,命名规范,风格相似)
简洁胜于复杂(优美的代码应当是简洁的,不要有复杂的内部实现)
复杂胜于凌乱(如果复杂不可避免,那代码间也不能有难懂的关系,要保持接口简洁)
扁平胜于嵌套(优美的代码应当是扁平的,不能有太多的嵌套)
间隔胜于紧凑(优美的代码有适当的间隔,不要奢望一行代码解决问题)
可读性很重要(优美的代码是可读的)
即便假借特例的实用性之名,也不可违背这些规则(这些规则至高无上)
不要包容所有错误,除非你确定需要这样做(精准地捕获异常,不写 except:pass 风格的代码)
当存在多种可能,不要尝试去猜测
而是尽量找一种,最好是唯一一种明显的解决方案(如果不确定,就用穷举法)
虽然这并不容易,因为你不是 Python 之父(这里的 Dutch 是指 Guido )
做也许好过不做,但不假思索就动手还不如不做(动手之前要细思量)
如果你无法向人描述你的方案,那肯定不是一个好方案;反之亦然(方案测评标准)
命名空间是一种绝妙的理念,我们应当多加利用(倡导与号召)
Python的解释器
由于Python是一门解释性语言。当我们编写Python代码时,我们得到的是一个包含代码的以.py为扩展名的文本文件。如果想要运行代码,就需要Python解释器去执行.py文件。环境搭建其实就是安装Python的解释器。Python的解释器有以下几种:

CPython
当我们从Python官方网站下载并安装好Python后,我们就直接获得了一个官方版本的解释器:CPython。这个解释器是用C语言开发的,所以叫CPython。CPython将Python源码编译成CPython字节码,由虚拟机解释执行。
Jython
Jython是运行在Java平台上的Python解释器,可以直接把Python代码编译成Java字节码执行。Jython在JVM上实现的Python,由Java编写。Jython将Python源码编译成JVM字节码,由JVM执行对应的字节码。
IPython
IPython是基于CPython之上的一个交互式解释器,也就是说,IPython只是在交互方式上有所增强,但是执行Python代码的功能和CPython是完全一样的。好比很多国产浏览器虽然外观不同,但内核其实都是调用了IE。CPython用>>>作为提示符,而IPython用In [序号]:作为提示符。
PyPy
PyPy是另一个Python解释器,它的目标是执行速度。PyPy采用JIT技术,对Python代码进行动态编译(注意不是解释),所以可以显著提高Python代码的执行速度。绝大部分Python代码都可以在PyPy下运行,但是PyPy和CPython有一些是不同的,这就导致相同的Python代码在两种解释器下执行可能会有不同的结果。如果你的代码要放到PyPy下执行,就需要了解PyPy和CPython的不同点。
IronPython
和Jython类似,只不过IronPython是运行在微软.Net平台上的Python解释器,可以直接把Python代码编译成.Net的字节码。
2 搭建Python环境
1、首先进入网站下载:点击打开链接(或自己输入网址https://www.python.org/),进入之后如下图,选择适合自己系统的安装包进行下载。(注:优先选择稳定的可执行文件进行下载)

2.下载完成后如下图所示:
在这里插入图片描述
3.双击进行安装,并按照圈中区域进行设置,切记要勾选打钩的框。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4.安装完成后可以在命令窗口中输入Python(或Python -V)进行查询是否安装成功。

3 pip工具的使用
3.1 pip介绍
• 我们都知道python有很多的第三方库或者说是模块。这些库针对不同的应用,发挥不同的作用。我们在实际的项目中肯定会用到这些模块。那如何将这些模块导入到自己的项目中呢?
• Python官方的PyPi仓库为我们提供了一个统一的代码托管仓库,所有的第三方库,甚至你自己写的开源模块,都可以发布到这里,让全世界的人分享下载 。
• python有两个著名的包管理工具easy_install和pip。在python 2中easy_install是默认安装的,而pip需要我们手动安装。随着Python版本的提高,easy_install已经逐渐被淘汰,但是一些比较老的第三方库,在现在仍然只能通过easy_install进行安装。目前,pip已经成为主流的安装工具,自Python 2 >=2.7.9或者Python 3.4以后默认都安装有pip。

3.2 pip的使用
在命令行下,输入pip,回车可以看到帮助说明:

常用的指令有下面几个:

查看pip版本
pip -v
pip --version

普通安装
pip install SomePackage
pip install SomePackage==1.0.5 # 指定版本
pip install ‘SomePackage>=1.0.6’ # 最小版本

可以通过使用==, >=, <=, >, < 来限定一个版本的范围

指定版本安装
pip install robotframework==2.8.7

卸载已安装的库
pip uninstall requests

列出已安装的库
pip list

显示所有安装包的信息
pip show package

将已经安装的库列表保存到本地文件中
pip freeze > D:\桌面\install.txt

3.3 使用wheel文件安装
除了使用上面的方式联网进行安装外,还可以将安装包也就是wheel格式的文件,下载到本地,然后使用pip进行安装。python中的pip安装很方便,但是有些时候会遇到安装失败的问题,这就可以将wheel文件下载到本地,然后pip进行安装。在下载wheel文件的时候,要提前查看python的版本,选择对应与python版本的库进行下载。接下来以安装numpy库为例。(wheel文件的下载地址:https://www.lfd.uci.edu/~gohlke/pythonlibs/)
在这里插入图片描述
1.安装 wheel

2.执行命令(pip install +wheel文件的绝对路径和文件名包含后缀)
在这里插入图片描述
3.安装完成
在这里插入图片描述

4 集成开发环境的安装和配置
集成开发环境(IDE, Integrated Development Environment),就是把开发相关的各种环境(和工具)都集成到一起使用。Pythone自带的IDLE或者Python Shell来编写Python是非常适合于简单程序的,但是这些工具往往将大型的编程项目变成一个个充满绝望和沮丧的“坑”。所以我们选择一款集成开发环境甚至是一款好的专用的代码编辑器是非常有必要的。这里有推荐的10个最好用的Python集成开发环境(IDE)。本文以PyCharm为例进行安装。

4.1 PyCharm的安装
1.首先进入Pycharm官网(或输入网址https://www.jetbrains.com/pycharm/download/#section=windows),下载PyCharm安装包,根据自己电脑的操作系统进行选择,本文以win系统安装社区版为例。
在这里插入图片描述
2.下载完成后如下图所示:
在这里插入图片描述
3.双击下载的安装包,进行安装,然后会弹出界面

4.选择安装目录,建议将其安装在D盘或者E盘,不建议放在系统盘C盘

5.点击Next,进入下图的界面,按照下图进行勾选:
在这里插入图片描述
其中,Create Desktop Shortcut是创建桌面快捷方式。勾选Create Associations是否关联文件,选择以后打开.py文件就会用PyCharm打开。
6.点击Next,进入下图:
在这里插入图片描述
默认安装即可,直接点击Install。
7.耐心的等待几分钟后就会得到下面的安装完成的界面
点击Finish,PyCharm安装完成。

4.2 PyCharm的配置
1、主题修改 File–settings–apperance–theme
2、代码字体修改 File–settings–Editor-Font
3、关闭更新 File–settings—apperance—System Settings —Updates — Automatically check updates for 取消打钩
4、快捷键修改 File–settings—apperance-- Keymap 选择自己习惯的快捷键方式
5、自动导包 File–settings—apperance–General —Auto Import 打钩
6、进制打开上次的工程 File–settings—apperance—System Settings —Reopen last project startup
7、修改新建文件文件头 File–settings–Editor—Code Style — File and Code Templates — Python Script

#!/usr/bin/env python

-- coding: utf-8 --

@Time : ${DATE} ${TIME}

@Author : Jerry

@File : ${NAME}.py

@Software: ${PRODUCT_NAME}

8、修改字体编码 File–settings–Editor—Code Style — File Encoding — Project Encoding
用pycharm编辑器运行导入os模块如下:
import os
print(os.age) 回车导入os
将requests模块克隆到pycharm编辑器:
首先在github官网搜索requests模块,复制链接地址到pycharm,进行clone.
如下图:
在这里插入图片描述
在这里插入图片描述
克隆引入模块成功。

hello world在pycharm中打印出来

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值