用gambit学博弈论---零和博弈

本文介绍了零和博弈的概念,强调了鞍点和纯战略纳什均衡的重要性。双人有限零和博弈中可能存在多个纳什均衡,而混合战略纳什均衡可以通过线性规划求解。虽然纳什均衡理论上保证了稳定性,但在多重纳什均衡情况下,聚焦均衡和其他因素可能影响实际决策。最后,讨论了帕累托最优在解决多重纳什均衡问题中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1双人零和博弈

  零和博弈中参与者一方所得(失)就是另一方所失(得),故,又称为严格竞争博弈。
在这里插入图片描述
   零和博弈也被称为矩阵博弈
  零和博弈的最大最小战略:做最坏的打算,争取最好的结果。
在这里插入图片描述
  鞍点,使得最坏里面最好的,最好里面最坏的相等的点。
在这里插入图片描述
  鞍点是纯战略纳什均衡。
在这里插入图片描述
  零和博弈的博弈矩阵A可能存在多个鞍点,但是零和博弈的值V却是唯一的。也就是说,一个零和博弈可能存在多个纯战略纳什均衡,而这些纳什均衡给出的参与者的均衡收益却是相同的。
  双人有限临河纳什博弈肯定会存在混合战略纳什均衡。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值