快速排序

快排,快排,不快怎么行呢!

但我们在实际应用中,处理大量数据时,如果采用普通排序(如冒泡排序)就会使得时间复杂度变为O(N^2),这是我们我们不愿意看到的。

而快速排序就很好的解决了这个问题。它的时间复杂度大概是O(logN),最坏的情况下为O(N^2)。当然我们一般情况下遇到最坏情况是很少见的。

快排,用到的一个重要的思想就是分治。分治分治,就是分而治之。简单来说,就是找到一个规律,将问题由大变小,最后得以解决。快排,一个重要的特点就是数据。数据就有大小之分。我们可以在一堆数据中随意找一个数,这个数称为枢纽元,其他数据与这个枢纽元进行比较,然后分成两组新的数据,一组数据全都比枢纽元小,另一组则比枢纽元大。在将这两组按照上面分治的方法进行处理。如此循环,直至所有数据都处理完成。

例如,有一个无序的数组a{4,1,3,9,7,5},利用快排进行处理

为了便于操作,一般我们取数组第一位为枢纽元(pivot),我们还需要两个下标指针i,j。它们分别指向数组的第一位以及最后一位。限制条件(i<j)

012345
413975
i



j
pivot=4,i=0,j=5

让后我们从右边开始,找到比pivot小的元素


012345
413975
i
j

 
pivot=4,i=0,j=2

然后进行数据赋值,将a[i]=a[j]


012345
313975
i
j

 

接着我们移动左边的i下标,记住条件是(i<j时,继续移动)以及a[i]>pivot

012345
313975
 
i,j

 
上述的操作不断的往返进行, 直达i=j时停止下标移动,此时另a[i]=pivot;

012345
314975
 
i,j

 
此时我们分为两个数组a1{3,1},a2{9,7,5}

对这两个数组进行以上操作,直到数组成为有序为止

void quick_sort(int *arr, int low, int high) {
	if (low < high) {
		int i = low, j = high, pivot = arr[low];
		while (i < j) {
			while (i < j&&arr[j] >= pivot)  //从右开始遍历,直到找到小于pivot的值为止
				--j;
			if (i < j)
				arr[i++] = arr[j];
			while (i < j&&arr[i] <= pivot)  //从左开始遍历直到找到大于pivot的值为止
				++i;
			if (i < j)
				arr[j--] = arr[i];
		}
		arr[i] = pivot;
		quick_sort(arr, low, i - 1);
		quick_sort(arr, i + 1, high);
	}
}

void main() {
	int arr[10] = { 99,76,199,34,321,56,1,45,26,38 };
	quick_sort(arr, 0, 9);
	for (int i = 0; i < 10; cout << arr[i++] << " " );
	cout << endl;
	system("pause");
}


快速排序算法效率与稳定性分析

  当基数值不能很好地分割数组,即基准值将数组分成一个子数组中有一个记录,而另一个子组组有 n -1 个记录时,下一次的子数组只比原来数组小 1,这是快速排序的最差的情况。如果这种情况发生在每次划分过程中,那么快速排序就退化成了冒泡排序,其时间复杂度为O(n2)。

  如果基准值都能讲数组分成相等的两部分,则出现快速排序的最佳情况。在这种情况下,我们还要对每个大小约为 n/2 的两个子数组进行排序。在一个大小为 n 的记录中确定一个记录的位置所需要的时间为O(n)。若T(n)为对n个记录进行排序所需要的时间,则每当一个记录得到其正确位置,整组大致分成两个相等的两部分时,我们得到快速排序算法的最佳时间复杂性。

  T(n) <= cn + 2T(n/2)    c是一个常数

     <= cn + 2(cn/2+2T(n/4)) = 2cn+ 4T(n/4)

     <= 2cn + 4(cn/4+ 2T(n/8)) = 3cn + 8T(n/8)

      …… ……

     <= cnlogn + nT(1) = O(nlogn)      其中cn 是一次划分所用的时间,c是一个常数

  最坏的情况,每次划分都得到一个子序列,时间复杂度为:

  T(n) = cn + T(n-1)

     = cn + c(n-1) + T(n - 2) = 2cn -c + T(n-2)

            = 2cn -c + c(n - 2) + T(n-3) = 3cn -3c + T(n-3)

    ……

    = c[n(n+1)/2-1] + T(1) =  O(n2)

  快速排序的时间复杂度在平均情况下介于最佳与最差情况之间,假设每一次分割时,基准值处于最终排序好的位置的概率是一样的,基准值将数组分成长度为0 和 n-1,1 和 n-2,……的概率都是 1/n。在这种假设下,快速排序的平均时间复杂性为:

    T(n) = cn + 1/n(T(k)+ T(n-k-1))   T(0) = c, T(1) = c

  这是一个递推公式,T(k)和T(n-k-1)是指处理长度为 k 和 n-k-1 数组是快速排序算法所花费的时间, 根据公式所推算出来的时间为 O(nlogn)。因此快速排序的平均时间复杂性为O(nlogn)。

  快速排序需要栈空间来实现递归,如果数组按局等方式被分割时,则最大的递归深度为 log n,需要的栈空间为 O(log n)。最坏的情况下在递归的每一级上,数组分割成长度为0的左子数组和长度为 n - 1 的右数组。这种情况下,递归的深度就成为 n,需要的栈空间为 O(n)。

  因为快速排序在进行交换时,只是根据比较基数值判断是否交换,且不是相邻元素来交换,在交换过程中可能改变相同元素的顺序,因此是一种不稳定的排序算法。




  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值