机器学习
阿猫的自拍
这个作者很懒,什么都没留下…
展开
-
SVM的在分析
今天面试了,面试官又又又问了我SVM的推导,但是面试官解答了我一个点,那就是为什我们会使用拉普拉斯。使用拉格朗日的好处在哪里,而这个点非常关键,让我知道了,除了我们会用来计算,我们还需要了解细节。而且要挖掘。 下面围绕SVM说两个点: 第一个点:与逻辑回归在思路上有什么不同。这个我们可以更加深入的了解逻辑回归的推到过程 第二个点:SVM本身会涉及到哪些计算,其中的一步会解决了上面的问题。 逻辑回归...原创 2019-10-22 12:04:18 · 213 阅读 · 0 评论 -
从MLE和MAP的角度看深度学习
参考链接: MAP和MLE的区别 目标函数和损失函数 为什么和谈MAP和MLE 现代机器学习的终极问题都会转化为解目标函数的优化问题,MLE和MAP是生成这个函数的很基本的思想,因此我们对二者的认知是非常重要。比如我们OCR中遇到的其实就是最大似然函数出发的,还有我们所熟悉的交叉商损失函数,其实通过MLE也可以推导得到的。准确来说这两个其实就是我们思考一些问题可以出发的点。也能看到机器学习和深度学...原创 2019-12-03 23:09:21 · 509 阅读 · 0 评论 -
LDA线性判别器
与PCA的区别 PCA降低维度为主,而且是一种无监督的降低维度,从数学上让协方差为0,让方差最大,从使得特征相互独立,却可以有效的区分。 LDA,作为线性判别器,‘投影后类内方差最小,类间方差最大’ 这句话在tripletloss也可以吧哈哈哈,真的是大家的出发点非常的相似。 但是又是借了PCA的思路,还记得我们的基的变换嘛,就是数据的分布从一个空间到另一个空间,其实LDA也是一样,不过是希望映射...原创 2019-10-12 22:45:49 · 142 阅读 · 0 评论 -
PCA降维学习
PCA参考文章1 ----基的变化是空间的变化 PCA的思路:将数据所在的维度用基表示,所谓的降低维度就是将数据乘以一个比现在维度小的基,然后数据就分布到维度小里面去了。将数据从一个空间映射到另一个空间。 只是降低维度是没有意义的,我们希望降低维度的同时,可以让数据更好的分类,所以PCA是有分类的作用的,当数据们因为维度映射到不同的位置,那就是一种分类。 如何选择基才是最优的。或者说,如果我们有...原创 2019-10-12 17:57:49 · 178 阅读 · 0 评论