输入一棵二叉树的根节点,判断该树是不是平衡二叉树。如果某二叉树中任意节点的左右子树的深度相差不超过1,那么它就是一棵平衡二叉树。
示例 1:
给定二叉树 [3,9,20,null,null,15,7]
3
/ \
9 20
/ \
15 7
返回 true 。
示例 2:
给定二叉树 [1,2,2,3,3,null,null,4,4]
1
/ \
2 2
/ \
3 3
/ \
4 4
返回 false 。
1、题目分析
要把这个题做明白就首先要明白什么是平衡二叉树;如果一个树为非空,该树的任意节点的左右子树的深度绝对值相差不超过1,就是一个平衡的二叉树。所有很显然这个需要用递归的方法去判断,不仅左右子树都是AVL树,而且左右子树的高度差不能超过1,这才算是一个平衡的二叉树。
2、解题分析
- 判断是不是空树,如果是直接返回空
- 写一个judge函数,计算左右子树的高度
- 如果满足左子树是AVL树,右子树也是,并且左右子树高度绝对值相差不超过1,才算是AVL树,否则就返回False
3、代码
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
#求左右子树的高度
def depth(self,root):
if not root:
return 0
return 1+max(self.depth(root.left),self.depth(root.right))
def isBalanced(self, root: TreeNode) -> bool:
if not root:
return True
#递归的判断:既要左右子树是AVL,又要高度的绝对值差不能超过1
return self.isBalanced(root.left) and self.isBalanced(root.right) and abs(self.depth(root.left)-self.depth(root.right))<=1
总结 判断AVL树最终要的就是左右子树的高度差;树的问题还需要多用递归的方法去解决。