AVL:剑指 Offer 55 - II. 平衡二叉树

46 篇文章 0 订阅

输入一棵二叉树的根节点,判断该树是不是平衡二叉树。如果某二叉树中任意节点的左右子树的深度相差不超过1,那么它就是一棵平衡二叉树。

示例 1:

给定二叉树 [3,9,20,null,null,15,7]

    3
   / \
  9  20
    /  \
   15   7
返回 true 。

示例 2:

给定二叉树 [1,2,2,3,3,null,null,4,4]

       1
      / \
     2   2
    / \
   3   3
  / \
 4   4
返回 false 。

1、题目分析

要把这个题做明白就首先要明白什么是平衡二叉树;如果一个树为非空,该树的任意节点的左右子树的深度绝对值相差不超过1,就是一个平衡的二叉树。所有很显然这个需要用递归的方法去判断,不仅左右子树都是AVL树,而且左右子树的高度差不能超过1,这才算是一个平衡的二叉树。

2、解题分析

  • 判断是不是空树,如果是直接返回空
  • 写一个judge函数,计算左右子树的高度
  • 如果满足左子树是AVL树,右子树也是,并且左右子树高度绝对值相差不超过1,才算是AVL树,否则就返回False

3、代码

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution:
    
    #求左右子树的高度
    def depth(self,root):
        if not root:
            return 0
        
        return 1+max(self.depth(root.left),self.depth(root.right))

    
    def isBalanced(self, root: TreeNode) -> bool:
        if not root:
            return True
        #递归的判断:既要左右子树是AVL,又要高度的绝对值差不能超过1
        return self.isBalanced(root.left) and self.isBalanced(root.right) and abs(self.depth(root.left)-self.depth(root.right))<=1

总结  判断AVL树最终要的就是左右子树的高度差;树的问题还需要多用递归的方法去解决。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值