这个题目用数学方去解决,1~n,选定第1位不同,剩下的n-1位进行全排列组合有(n-1)!中,下标从0开始,所有第一位的元素就可以确定,index=k//(n-1)!.确定第一位之后紧接着更新k。k=k-index*(n-1)!.然后继续依次的重复上述操作,直到把第n位的元素找出来。
#在解题区看到一个说法觉得非常清晰明了:注意k是从0开始的
直接用回溯法做的话需要在回溯到第k个排列时终止就不会超时了, 但是效率依旧感人
可以用数学的方法来解, 因为数字都是从1开始的连续自然数, 排列出现的次序可以推
算出来, 对于n=4, k=15 找到k=15排列的过程:
1 + 对2,3,4的全排列 (3!个)
2 + 对1,3,4的全排列 (3!个) 3, 1 + 对2,4的全排列(2!个)
3 + 对1,2,4的全排列 (3!个)-------> 3, 2 + 对1,4的全排列(2!个)-------> 3, 2, 1 + 对4的全排列(1!个)-------> 3214
4 + 对1,2,3的全排列 (3!个) 3, 4 + 对1,2的全排列(2!个) 3, 2, 4 + 对1的全排列(1!个)
确定第一位:
k = 14(从0开始计数)
index = k / (n-1)! = 2, 说明第15个数的第一位是3
更新k
k = k - index*(n-1)! = 2
确定第二位:
k = 2
index = k / (n-2)! = 1, 说明第15个数的第二位是2
更新k
k = k - index*(n-2)! = 0
确定第三位:
k = 0
index = k / (n-3)! = 0, 说明第15个数的第三位是1
更新k
k = k - index*(n-3)! = 0
确定第四位:
k = 0
index = k / (n-4)! = 0, 说明第15个数的第四位是4
最终确定n=4时第15个数为3214
**/
class Solution:
def getPermutation(self, n: int, k: int) -> str:
k=k-1
#保存阶乘结果
factorials = [1]
num =[]
temp = []
fact=1
for i in range(1,n+1):
temp.append(i)
fact*=i
factorials.append(fact)
for i in range(n-1,-1,-1):
#更新index,k
index = k//(factorials[i])
k = k-index*(factorials[i])
num.append(str(temp.pop(index)))
print(num)
return ''.join(num)
总结:解决题目的一个关键就是k是从0开始。