《Leetcode of September 》60.第K个排列

这个题目用数学方去解决,1~n,选定第1位不同,剩下的n-1位进行全排列组合有(n-1)!中,下标从0开始,所有第一位的元素就可以确定,index=k//(n-1)!.确定第一位之后紧接着更新k。k=k-index*(n-1)!.然后继续依次的重复上述操作,直到把第n位的元素找出来。

        #在解题区看到一个说法觉得非常清晰明了:注意k是从0开始的
        直接用回溯法做的话需要在回溯到第k个排列时终止就不会超时了, 但是效率依旧感人
        可以用数学的方法来解, 因为数字都是从1开始的连续自然数, 排列出现的次序可以推
        算出来, 对于n=4, k=15 找到k=15排列的过程:
        
        1 + 对2,3,4的全排列 (3!个)         
        2 + 对1,3,4的全排列 (3!个)         3, 1 + 对2,4的全排列(2!个)
        3 + 对1,2,4的全排列 (3!个)-------> 3, 2 + 对1,4的全排列(2!个)-------> 3, 2, 1 + 对4的全排列(1!个)-------> 3214
        4 + 对1,2,3的全排列 (3!个)         3, 4 + 对1,2的全排列(2!个)         3, 2, 4 + 对1的全排列(1!个)
        
        确定第一位:
            k = 14(从0开始计数)
            index = k / (n-1)! = 2, 说明第15个数的第一位是3 
            更新k
            k = k - index*(n-1)! = 2
        确定第二位:
            k = 2
            index = k / (n-2)! = 1, 说明第15个数的第二位是2
            更新k
            k = k - index*(n-2)! = 0
        确定第三位:
            k = 0
            index = k / (n-3)! = 0, 说明第15个数的第三位是1
            更新k
            k = k - index*(n-3)! = 0
        确定第四位:
            k = 0
            index = k / (n-4)! = 0, 说明第15个数的第四位是4
        最终确定n=4时第15个数为3214 
        **/

 

class Solution:
    def getPermutation(self, n: int, k: int) -> str:
        k=k-1
        #保存阶乘结果
        factorials = [1]
        num  =[]
        temp = []
        fact=1
        for i in range(1,n+1):
            temp.append(i)
            fact*=i
            factorials.append(fact)
        
        for i in range(n-1,-1,-1):
            #更新index,k
            index = k//(factorials[i])
            k = k-index*(factorials[i])
            num.append(str(temp.pop(index)))
        
        print(num)
        return ''.join(num)

总结:解决题目的一个关键就是k是从0开始。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值