NLP
文章平均质量分 96
Alex好好干饭
这个作者很懒,什么都没留下…
展开
-
2.2 Transformer相关原理-图解transformer
目录1. 前言2.从整体宏观来理解Transformer3. 从细节理解Transformer3.1 Transformer 的输入3.2 Encoder(编码器)3.3 Self-Attention 整体理解3.4 Self-Attention 的细节计算Query 向量,Key 向量,Value 向量(Q K V)计算 Attention Score(注意力分数)使用矩阵计算 Self-Attention多头注意力机制(multi-head attention)4. 代码实现矩阵计算 Attention原创 2021-08-18 23:25:49 · 2285 阅读 · 0 评论 -
2.1 Transformer相关原理-图解Attention
目录图解AttentionSeq2seq模型细节图解Transformer图解AttentionSeq2seq模型序列到序列(seq2seq)顾名思义输入和输出都是序列,应用场景有很多,比如机器翻译、文本摘要、图像描述生成等。一个序列到序列(seq2seq)模型,接收的输入是一个(单词、字母、图像特征)序列,输出是另外一个序列。一个训练好的模型如下图所示:在神经机器翻译中,一个序列是指一连串的单词。类似地,输出也是一连串单词。细节seq2seq模型是由编码器(Encoder)和解码器(De原创 2021-08-18 15:25:14 · 484 阅读 · 0 评论