数学推导+纯Python实现机器学习算法9:线性支持向量机

Python机器学习算法实现

Author:louwill

     

     在上一讲中,我们探讨了线性可分情况下的支持向量机模型。本节我们来继续探讨svm的第二种情况,线性支持向量机。何谓线性支持呢?就是训练数据中大部分实例组成的样本集合是线性可分的,但有一些特异点的存在造成了数据线性不可分的状态,在去除了这些特异点之后,剩下的数据组成的集合便是线性可分的。

原始问题

    所以我们可以在线性可分支持向量机的基础上,推导线性支持向量机的基本原理。假设训练数据线性不可分,这便意味着某些样本点不满足此前线性可分中的函数间隔大于1的约束条件,线性支持向量机这里的处理方法是对每个实例引入一个松弛变量,使得函数间隔加上松弛变量大于等于1。对应于线性可分时的硬间隔最大化(hard margin svm),线性支持向量机可称为软间隔最大化问题(soft margin svm)。

    因而线性支持向量机就可以形式化为一个凸二次规划问题:

640?wx_fmt=png

    其中C>0为惩罚参数,表示对误分类的惩罚程度。最小化该目标函数可包含两层含义:既要使得间隔最大化也要使得误分类点个数最少,C即为二者的调和系数。关于凸二次规划问题(QP)的求解,各位可参考运筹学、凸优化等教材课程,这里不多赘述。

    再来看线性支持向量机的对偶问题。首先定义拉格朗日函数如下:

640?wx_fmt=png

    由上一讲的推导可知,对偶问题为拉格朗日函数的极大极小问题。基于该拉格朗日函数对w、b和keci求偏导:

640?wx_fmt=png

    由上三式可得:

640?wx_fmt=png

    将上述三个式子再代回到拉格朗日函数中:

640?wx_fmt=png

    于是便可得到线性支持向量机的对偶问题:

640?wx_fmt=png

    由KKT条件:

640?wx_fmt=png

    计算可得:

640?wx_fmt=png

640?wx_fmt=png

    以上便是线性支持向量机,也即软间隔最大化对偶问题的推导过程。

cvxopt

    本节将使用Python的凸优化求解的第三方库cvxopt实现线性支持向量机。先对该库进行了一个简单介绍。经典的二次规划问题可表示为如下形式:

640?wx_fmt=png

    假设要求解如下二次规划问题:

640?wx_fmt=png

    将目标函数和约束条件写成矩阵形式:

640?wx_fmt=png

    基于cvxopt包求解上述问题如下:

import numpy	
from cvxopt import matrix	
from cvxopt import solvers
# 定义二次规划参数	
P = matrix([[1.0,0.0],[0.0,0.0]])	
q = matrix([3.0,4.0])	
G = matrix([[-1.0,0.0,-1.0,2.0,3.0],[0.0,-1.0,-3.0,5.0,4.0]])	
h = matrix([0.0,0.0,-15.0,100.0,80.0])
# 构建求解	
sol = solvers.qp(P,q,G,h)

640?wx_fmt=png

# 获取最优值	
print(sol['x'],sol['primal objective'])

640?wx_fmt=png

基于cvxopt的线性支持向量机实现

    导入相关package:

import numpy as np	
from numpy import linalg	
import cvxopt	
import cvxopt.solvers	
import pylab as pl

定义一个线性核函数:

def linear_kernel(x1, x2):	
    return np.dot(x1, x2)

生成示例数据:

def gen_non_lin_separable_data():	
    mean1 = [-1, 2]	
    mean2 = [1, -1]	
    mean3 = [4, -4]	
    mean4 = [-4, 4]	
    cov = [[1.0, 0.8], [0.8, 1.0]]	
    X1 = np.random.multivariate_normal(mean1, cov, 50)	
    X1 = np.vstack((X1, np.random.multivariate_normal(mean3, cov, 50)))	
    y1 = np.ones(len(X1))	
    X2 = np.random.multivariate_normal(mean2, cov, 50)	
    X2 = np.vstack((X2, np.random.multivariate_normal(mean4, cov, 50)))	
    y2 = np.ones(len(X2)) * -1	
    return X1, y1, X2, y2	
    	
X1, y1, X2, y2 = gen_non_lin_separable_data()

基于示例数据生成训练集和测试集:

def split_train(X1, y1, X2, y2):	
    X1_train = X1[:90]	
    y1_train = y1[:90]	
    X2_train = X2[:90]	
    y2_train = y2[:90]	
    X_train = np.vstack((X1_train, X2_train))	
    y_train = np.hstack((y1_train, y2_train))	
    return X_train, y_train
def split_test(X1, y1, X2, y2):	
    X1_test = X1[90:]	
    y1_test = y1[90:]	
    X2_test = X2[90:]	
    y2_test = y2[90:]	
    X_test = np.vstack((X1_test, X2_test))	
    y_test = np.hstack((y1_test, y2_test))	
    return X_test, y_test
X_train, y_train = split_train(X1, y1, X2, y2)	
X_test, y_test = split_test(X1, y1, X2, y2)	
print(X_train.shape, y_train.shape, X_test.shape, y_test.shape)

基于cvxopt库定义线性支持向量机的训练过程:

def fit(X, y, C):	
    n_samples, n_features = X.shape	

	
    # Gram matrix	
    K = np.zeros((n_samples, n_samples))	
    for i in range(n_samples):	
        for j in range(n_samples):	
            K[i, j] = linear_kernel(X[i], X[j])	

	
    P = cvxopt.matrix(np.outer(y, y) * K)	
    q = cvxopt.matrix(np.ones(n_samples) * -1)	
    A = cvxopt.matrix(y, (1, n_samples))	
    b = cvxopt.matrix(0.0)	

	
    if C is None:	
        G = cvxopt.matrix(np.diag(np.ones(n_samples) * -1))	
        h = cvxopt.matrix(np.zeros(n_samples))	
    else:	
        tmp1 = np.diag(np.ones(n_samples) * -1)	
        tmp2 = np.identity(n_samples)	
        G = cvxopt.matrix(np.vstack((tmp1, tmp2)))	
        tmp1 = np.zeros(n_samples)	
        tmp2 = np.ones(n_samples) * C	
        h = cvxopt.matrix(np.hstack((tmp1, tmp2)))	

	
    # solve QP problem	
    solution = cvxopt.solvers.qp(P, q, G, h, A, b)	

	
    # Lagrange multipliers	
    a = np.ravel(solution['x'])	
    # Support vectors have non zero lagrange multipliers	
    sv = a > 1e-5	
    ind = np.arange(len(a))[sv]	
    a = a[sv]	
    sv_x = X[sv]	
    sv_y = y[sv]	
    print("%d support vectors out of %d points" % (len(a), n_samples))	

	
    # Intercept	
    b = 0	
    for n in range(len(a)):	
        b += sv_y[n]	
        b -= np.sum(a * sv_y * K[ind[n], sv])	
    b /= len(a)	

	
    # Weight vector	
    w = np.zeros(n_features)	
    for n in range(len(a)):	
        w += a[n] * sv_y[n] * sv[n]	
    else:	
        w = None

640?wx_fmt=png

软间隔支持向量机函数化封装

import numpy as np	
from numpy import linalg	
import cvxopt	
import cvxopt.solvers	
import pylab as pl	

	
def linear_kernel(x1, x2):	
    return np.dot(x1, x2)	

	
class soft_margin_svm(object):	

	
    def __init__(self, kernel=linear_kernel, C=None):	
        self.kernel = kernel	
        self.C = C	
        if self.C is not None:	
            self.C = float(self.C)	

	
    def fit(self, X, y):	
        n_samples, n_features = X.shape	

	
        # Gram matrix	
        K = np.zeros((n_samples, n_samples))	
        for i in range(n_samples):	
            for j in range(n_samples):	
                K[i, j] = self.kernel(X[i], X[j])	

	
        P = cvxopt.matrix(np.outer(y, y) * K)	
        q = cvxopt.matrix(np.ones(n_samples) * -1)	
        A = cvxopt.matrix(y, (1, n_samples))	
        b = cvxopt.matrix(0.0)	

	
        if self.C is None:	
            G = cvxopt.matrix(np.diag(np.ones(n_samples) * -1))	
            h = cvxopt.matrix(np.zeros(n_samples))	
        else:	
            tmp1 = np.diag(np.ones(n_samples) * -1)	
            tmp2 = np.identity(n_samples)	
            G = cvxopt.matrix(np.vstack((tmp1, tmp2)))	
            tmp1 = np.zeros(n_samples)	
            tmp2 = np.ones(n_samples) * self.C	
            h = cvxopt.matrix(np.hstack((tmp1, tmp2)))	

	
        # solve QP problem	
        solution = cvxopt.solvers.qp(P, q, G, h, A, b)	

	
        # Lagrange multipliers	
        a = np.ravel(solution['x'])	

	
        # Support vectors have non zero lagrange multipliers	
        sv = a > 1e-5	
        ind = np.arange(len(a))[sv]	
        self.a = a[sv]	
        self.sv = X[sv]	
        self.sv_y = y[sv]	
        print("%d support vectors out of %d points" % (len(self.a), n_samples))	

	
        # Intercept	
        self.b = 0	
        for n in range(len(self.a)):	
            self.b += self.sv_y[n]	
            self.b -= np.sum(self.a * self.sv_y * K[ind[n], sv])	
        self.b /= len(self.a)	

	
        # Weight vector	
        if self.kernel == linear_kernel:	
            self.w = np.zeros(n_features)	
            for n in range(len(self.a)):	
                self.w += self.a[n] * self.sv_y[n] * self.sv[n]	
        else:	
            self.w = None	

	
    def project(self, X):	
        if self.w is not None:	
            return np.dot(X, self.w) + self.b	
        else:	
            y_predict = np.zeros(len(X))	
            for i in range(len(X)):	
                s = 0	
                for a, sv_y, sv in zip(self.a, self.sv_y, self.sv):	
                    s += a * sv_y * self.kernel(X[i], sv)	
                y_predict[i] = s	
            return y_predict + self.b	

	
    def predict(self, X):	
        return np.sign(self.project(X))	

	

	
if __name__ == "__main__":	
    def gen_non_lin_separable_data():	
        mean1 = [-1, 2]	
        mean2 = [1, -1]	
        mean3 = [4, -4]	
        mean4 = [-4, 4]	
        cov = [[1.0, 0.8], [0.8, 1.0]]	
        X1 = np.random.multivariate_normal(mean1, cov, 50)	
        X1 = np.vstack((X1, np.random.multivariate_normal(mean3, cov, 50)))	
        y1 = np.ones(len(X1))	
        X2 = np.random.multivariate_normal(mean2, cov, 50)	
        X2 = np.vstack((X2, np.random.multivariate_normal(mean4, cov, 50)))	
        y2 = np.ones(len(X2)) * -1	
        return X1, y1, X2, y2	

	

	
    def gen_lin_separable_overlap_data():	
        # generate training data in the 2-d case	
        mean1 = np.array([0, 2])	
        mean2 = np.array([2, 0])	
        cov = np.array([[1.5, 1.0], [1.0, 1.5]])	
        X1 = np.random.multivariate_normal(mean1, cov, 100)	
        y1 = np.ones(len(X1))	
        X2 = np.random.multivariate_normal(mean2, cov, 100)	
        y2 = np.ones(len(X2)) * -1	
        return X1, y1, X2, y2	

	

	
    def split_train(X1, y1, X2, y2):	
        X1_train = X1[:90]	
        y1_train = y1[:90]	
        X2_train = X2[:90]	
        y2_train = y2[:90]	
        X_train = np.vstack((X1_train, X2_train))	
        y_train = np.hstack((y1_train, y2_train))	
        return X_train, y_train	

	

	
    def split_test(X1, y1, X2, y2):	
        X1_test = X1[90:]	
        y1_test = y1[90:]	
        X2_test = X2[90:]	
        y2_test = y2[90:]	
        X_test = np.vstack((X1_test, X2_test))	
        y_test = np.hstack((y1_test, y2_test))	
        return X_test, y_test	

	

	
    def plot_margin(X1_train, X2_train, clf):	
        def f(x, w, b, c=0):	
            # given x, return y such that [x,y] in on the line	
            # w.x + b = c	
            return (-w[0] * x - b + c) / w[1]	

	
        pl.plot(X1_train[:, 0], X1_train[:, 1], "ro")	
        pl.plot(X2_train[:, 0], X2_train[:, 1], "bo")	
        pl.scatter(clf.sv[:, 0], clf.sv[:, 1], s=100, c="g")	

	
        # w.x + b = 0	
        a0 = -4;	
        a1 = f(a0, clf.w, clf.b)	
        b0 = 4;	
        b1 = f(b0, clf.w, clf.b)	
        pl.plot([a0, b0], [a1, b1], "k")	

	
        # w.x + b = 1	
        a0 = -4;	
        a1 = f(a0, clf.w, clf.b, 1)	
        b0 = 4;	
        b1 = f(b0, clf.w, clf.b, 1)	
        pl.plot([a0, b0], [a1, b1], "k--")	

	
        # w.x + b = -1	
        a0 = -4;	
        a1 = f(a0, clf.w, clf.b, -1)	
        b0 = 4;	
        b1 = f(b0, clf.w, clf.b, -1)	
        pl.plot([a0, b0], [a1, b1], "k--")	

	
        pl.axis("tight")	
        pl.show()	

	

	
    def plot_contour(X1_train, X2_train, clf):	
        pl.plot(X1_train[:, 0], X1_train[:, 1], "ro")	
        pl.plot(X2_train[:, 0], X2_train[:, 1], "bo")	
        pl.scatter(clf.sv[:, 0], clf.sv[:, 1], s=100, c="g")	

	
        X1, X2 = np.meshgrid(np.linspace(-6, 6, 50), np.linspace(-6, 6, 50))	
        X = np.array([[x1, x2] for x1, x2 in zip(np.ravel(X1), np.ravel(X2))])	
        Z = clf.project(X).reshape(X1.shape)	
        pl.contour(X1, X2, Z, [0.0], colors='k', linewidths=1, origin='lower')	
        pl.contour(X1, X2, Z + 1, [0.0], colors='grey', linewidths=1, origin='lower')	
        pl.contour(X1, X2, Z - 1, [0.0], colors='grey', linewidths=1, origin='lower')	

	
        pl.axis("tight")	
        pl.show()	

	
 	
    def test_soft():	
        X1, y1, X2, y2 = gen_lin_separable_overlap_data()	
        X_train, y_train = split_train(X1, y1, X2, y2)	
        X_test, y_test = split_test(X1, y1, X2, y2)	

	
        clf = soft_margin_svm(C=1000.1)	
        clf.fit(X_train, y_train)	

	
        y_predict = clf.predict(X_test)	
        correct = np.sum(y_predict == y_test)	
        print("%d out of %d predictions correct" % (correct, len(y_predict)))	

	
        plot_contour(X_train[y_train == 1], X_train[y_train == -1], clf)	

	
    test_soft()

640?wx_fmt=png

    以上就是本节内容,关于近似线性可分以及软间隔最大化问题,笔者将在下一篇推文中介绍。完整代码文件和数据可参考笔者GitHub地址:

https://github.com/luwill/machine-learning-code-writing

参考资料:

https://github.com/SmirkCao/Lihang/tree/master/CH07

http://cvxopt.org/examples/

往期精彩:


一个数据科学从业者的学习历程

640?

640?wx_fmt=jpeg

长按二维码.关注机器学习实验室

640?wx_fmt=jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值