线性可分支持向量机与硬间隔最大化

线性可分支持向量机(SVM)是通过间隔最大化寻找最佳分离超平面的线性分类模型。本文详细介绍了SVM的基本概念,包括函数间隔与几何间隔,以及如何通过最大化几何间隔来找到最优超平面。重点讨论了线性可分情况下的SVM学习算法,解释了支持向量的重要性,指出在决策过程中只有支持向量起作用。同时,文章还探讨了基于鸢尾花卉数据集的线性可分SVM设计。
摘要由CSDN通过智能技术生成

线性可分支持向量机与硬间隔最大化

参考文献:【支持向量机(分类问题公式及python实现)】

1. 支持向量机简介

支持向量机(SVM)是一种二类分类模型。它的基本模型是定义在特征空间上的间隔最大的线性分类器。它的学习策略是间隔最大化。可形式化为一个求解凸二次规划的问题。支持向量机的学习算法是求解凸二次规划的最优化算法。

  • 当训练数据线性可分时,通过硬间隔最大化,学习一个线性的分类器,即线性可分支持向量机,又称为硬间隔支持向量机;
  • 当训练数据近似线性可分时,通过软间隔最大化,也学习一个线性的分类器,即线性支持向量机,又称为软间隔支持向量机;
  • 当训练数据线性不可分时,通过使用核技巧及软间隔最大化,学习非线性支持向量机。

当输入空间为欧氏空间或离散集合、特征空间为希尔伯特空间时,核函数表示将输入从输入空间映射到特征空间得到的特征向量之间的内积。通过使用核函数可以学习非线性支持向量机,等价于隐式地在高维的特征空间中学习线性支持向量机。这样的方法称为核技巧。

2. 线性可分支持向量机

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DeeGLMath

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值