描述
输入两个递增的链表,单个链表的长度为n,合并这两个链表并使新链表中的节点仍然是递增排序的。
数据范围: 0 \le n \le 10000≤n≤1000,-1000 \le 节点值 \le 1000−1000≤节点值≤1000
要求:空间复杂度 O(1),时间复杂度 O(n)
如输入{1,3,5},{2,4,6}时,合并后的链表为{1,2,3,4,5,6},所以对应的输出为{1,2,3,4,5,6},转换过程如下图所示:
解题
1.使用递归
- 这个方法的时间复杂度是O(m+n)
class ListNode {
int val;
ListNode next = null;
ListNode(int val) {
this.val = val;
}
}
public class Solution {
public static void main(String[] args) {
Solution solution = new Solution();
ListNode l1 = new ListNode(1);
l1.next = new ListNode(3);
l1.next.next = new ListNode(5);
ListNode l2 = new ListNode(2);
l2.next = new ListNode(4);
l2.next.next = new ListNode(6);
ListNode merge = solution.Merge(l1, l2);
while(merge!=null){
System.out.print(merge.val + " ");
merge = merge.next;
}
}
public ListNode Merge(ListNode list1, ListNode list2) {
if (list1 == null) {
return list2;
} else if (list2 == null) {
return list1;
}
if (list2.val > list1.val) {
list1.next = Merge(list1.next, list2);
return list1;
} else {
list2.next = Merge(list1, list2.next);
return list2;
}
}
}