1.说明
其他博客已经讲得很详细了,但是或多或少会有些问题,我自己安装了一遍 发下了如下的一些注意事项,想安装的同学们注意了。
假设你已经安装好了anaconda 和py37。
2.CUDA和 cudnn
安装cuda的时候,大的版本号一定要对,安装cuda的时候会自动帮你更新驱动的版本。例如我现在的显卡支持9.2.1,那么安装cuda9.2.148的时候,会自动让我的显卡驱动更新到9.2.148的版本。
安装的时候用自定义安装,不要选vs studio那个选项,也不要安装vs开发环境(如果只是要用torch的话)。
安装结束后,也不需要编译啥的,直接到 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.2\extras\demo_suite这里去运行band和device开头的程序就行。
cudnn的版本随便选,但一定要选支持cuda9.2的。
3 pytorch
最简单的还是照着其他博主,去官网搜对应的安装语句,但是可能会很慢,有些版本的torch在清华镜像上也找不到,所以建议下载whl直接安装 http://download.pytorch.org/whl/torch_stable.html 选择你对应版本的torchvision(需要的话)和torch。
然后anaconda打开或新建一个虚拟环境,在命令行中pip install “xxx” 即可,xxx代表你下载的两个whl的路径,要写全。
最后运行下面代码就可以啦,会输出对应的版本和true的提示。
import torch
print(torch.__version__)
print(torch.cuda.is_available())
print(torch.version.cuda)
4 问题
看到其他博客下面有人提问,2中的device和band会得到35或者 38的错误代码,这是因为驱动版本不对,或者你的显卡出问题了,可以去修一下,或者退回比较老的显卡驱动版本,安装老的cuda。但是老的cuda未见的支持新的torch。
使用的时候把360关掉,不然会一直提示可以操作。